Statement of

Dr. Matthew Hejduk

Senior Project Leader - Civil Systems Group

The Aerospace Corporation

Before the

Committee on Science, Space, and Technology Subcommittee on Space and Aeronautics

U.S. House of Representatives

"Space Situational Awareness: Guiding the Transition to a Civil Capability"

Chairman Beyer, Ranking Member Babin, and distinguished members of the Subcommittee, thank you for inviting me to join this discussion. I am on the staff of The Aerospace Corporation, a non-profit Federally-funded Research and Development Center whose purpose is to provide advice to the Government on all aspects of the nation's space enterprise. The full thirty-three years of my career have been spent in the Space Situational Awareness (SSA) domain, which has included the design and development of space sensors and command and control systems; basic research on SSA data exploitation algorithms; large-scale simulation of SSA systems; and in the last decade of my career, as a subject matter expert for NASA on the orbital safety problem. I also serve on the graduate faculty of Baylor University and advise dissertations in the Department of Statistical Sciences. It is a great pleasure to give testimony today on the subject that has constituted my life's work.

<u>Introduction</u>

The space population has grown tremendously in the last decade, and recent FCC and ITU filings for large satellite constellations make clear that the rate of growth is likely to remain high. At the same time, the relevant space debris population from existing debris fields decaying into more populated orbital regions and from fresh debris production, such as from the recent Russian ASAT test, is also growing. In combination, this makes the operational orbital safety mission—a set of activities to prevent active satellites from colliding with space debris and with each other—increasingly difficult. The USG's support to the civil and commercial orbital safety enterprise is presently performed by the DOD, which has always been an awkward mission for a military organization. The growing demands in this area are likely to consume more and more resources, could distract the DOD from their principal mission to protect and defend against military threats (rather than natural and unintentional hazards), and increase the disconnect yet further between the needed and actual R&D and architecture investments needed to meet the

operational demands of the present and evolving space activities and ensure long term sustainability of the space environment. This collection of difficulties explains the present impetus to transfer the USG's support to the civil and commercial orbital safety enterprise to a civilian governmental agency, in which there can be both undistracted mission focus and advocacy for the needed short- and long-term investments.

Transitioning this capability and responsibility poses considerable challenges. Accessing the DoD precision space catalogue data from a civil location for execution of the civil and commercial orbital safety mission software is more complex than is generally supposed — especially if one wishes at the same time to update the computer architecture, create a twenty-first-century data exchange mechanism with space operators, and adopt a modest set of proposed algorithmic and methodological improvements from recent academic research that could notably enhance mission performance. Additionally, in an area that previously had been the purview of government, there is now a robust and rapidly growing space situation awareness (SSA) commercial enterprise, offering everything from raw space tracking data to full space catalogues to advanced orbital safety calculations and services; one would certainly wish to attempt to take advantage of the innovative offerings of this burgeoning industrial sector in a reconstituted orbital safety capability. These two considerations conspire to make a seemingly simple transfer of capability and responsibility instead a challenging proposal.

To address the question of how this transition should be executed, it is necessary to examine the different parts of the orbital safety enterprise in order to understand the particular issues and opportunities presented by each. It is best to begin with a discussion of the concept of the space catalogue, as this is the foundational element of nearly all space applications. Next, the operational orbital safety mission will be decomposed into its three component parts, and the challenges and favored transition approaches for each of these will be discussed. After this, known gaps in the present approach and algorithm set will be identified, with paths to resolution suggested. While throughout this whole treatment the question of commercial data and services will be considered as it applies to each part, an extended discussion of the role of commercial data, especially commercial measurement and satellite position data, in the overall enterprise will be given a collective evaluation. Finally, the question of how to evaluate and examine flight safety R&D products, whether offered by academia or industry, that have the propensity to improve the civil agency's flight safety mission execution, will be considered

The Precision Space Catalogue

If the goal of operational orbital safety is to protect active satellites from collisions with space debris and with each other, the enabling first step is to know what objects are in Earth orbit, where they are, and where they are expected to be some number of days into the future. The name given to this collection of information used for accurate astrodynamics calculations is

the precision space catalogue. It consists of both the position and velocity of every known space object (the position and velocity of a satellite are called the satellite "state"), a statement of the uncertainty with which each satellite state is known (called a "covariance"), and the collection of the orbital models that will allow the satellite state to be predicted forward into the future so that the satellite's location at some future time can be determined. There are two ways objects can be added to and maintained as part of a space catalogue: they can be discovered and tracked by satellite tracking sensors and have orbits built for them (the only method available for derelict spacecraft, rocket bodies, and space debris); or the owners/operators (O/Os) of active satellites, who know the present and predicted state information for their spacecraft, can submit this information to be added to a space catalogue. The particulars and issues associated with each of these methods are discussed separately below.

The "non-cooperative" space catalogue maintenance method, which involves space sensors discovering/tracking objects and a central processing facility to receive tracking information and build orbits, is both difficult and expensive. Space sensors, especially for tracking objects in low-Earth orbit (called "LEO" satellites, which have orbital altitudes less than ~2000 km and constitute the bulk of both operational satellites and space debris), usually require radar technology, which is complicated and expensive both to build and operate; and a large number of sensors is needed to obtain satellite tracking over all different parts of a satellite orbit. The generation of satellite orbits from tracking data is difficult and requires both specialized software and subject matter experts to massage the orbit parameters manually for sparsely-tracked orbits, difficult-to-maintain orbits, or situations with corrupted or misfiled satellite tracking data. This complicated, cumbersome, and expensive set of activities is already being performed by the DoD for military purposes, so it is unsurprising that the civil agency charged with taking on this mission for civil and commercial satellites is seeking to obtain the DOD space catalogue, which is complete down to objects approximately 10 cm in size in LEO, for use as the foundational datastore for the orbital safety mission.

There are also several industrial actors who operate their own space tracking sensor networks and maintain their own space catalogues, often with claims of including objects smaller than the publicly available DOD catalogue and thus being more complete. For at least some orbital regimes, these claims are plausible; so the question naturally arises whether a civil orbital safety capability should purchase access to such expanded catalogues and by doing so thus be able to provide more comprehensive orbital safety calculations and recommendations. It is certainly true that working from a more comprehensive space catalogue will produce a more comprehensive result, but there are additional considerations that make the decision more complicated.

It is often presumed that the use of a more comprehensive space catalogue will help to reduce the production of space debris, for it will allow the identification and prevention of satellite collisions that would have produced large amounts of such debris. While more data are

¹ It is important to distinguish between the "high-precision" space catalogue, which uses precision numeric orbit modeling, is required for meaningful orbital safety calculations, and is in bulk shared with only a few agencies within the USG; and the "low-precision" space catalogue, which uses analytic modeling, produces a fast but imprecise solution, and is posted publicly on the Space Force's www.space-track.org website for unrestricted public download.

always beneficial, the improvement is not linear and, for the current LEO situation, expected to be muted. While the dynamics of satellite collision debris production are complicated, analysis shows that the creation of notably large amounts of debris usually requires the collision of two objects larger than about 10 cm in dimension. Because the current DoD catalogue is considered reasonably complete to this object size, an enhanced satellite catalogue with more complete holdings at smaller sizes, while perhaps beneficial for other reasons, is unlikely to make a notable difference in reducing the production of space debris.

Debris production aside, orbital safety calculations based on a more complete catalogue would help to identify and avoid collisions that could end satellite missions. This is a high priority for human space flight; but beyond human-space-flight applications, it may make sense to distinguish between orbital safety improvements that protect the collective good of preserving a space environment free of debris pollution and those that provide primarily individual goods for individual O/Os. The latter may be more appropriately addressed by an advanced service that can be purchased by O/Os should they desire it. This is a policy issue to be considered by the orbital safety civil agency in setting up the parameters of their service.

To complete the discussion of the population of the space catalogue, it remains to describe the alternative mechanism for establishing state and uncertainty information on an active spacecraft, namely receiving this information directly from the satellite O/O. Such a submission generally takes the form of an ephemeris, which is a file containing a series of satellite states at regular time intervals (one-minute intervals are typically used for LEO) usually spanning several days into the future. This method of state representation is substantially superior, one might even say essential, for the orbital safety mission because an O/O ephemeris can both be much less uncertain than one derived from external measurements and, perhaps more importantly, can contain and represent a satellite's planned future maneuvers, which allows the satellite's planned trajectory changes to be considered when identifying close approaches between this satellite and other space objects. The DOD presently accepts O/O ephemerides to use in its orbital safety calculations (although it does not take the next step of using these data to update its official catalogue), but it does not perform any quality checking or validation on these submissions. Some O/O ephemerides, in both their state predictions and uncertainty assessments, are quite good; others are poor. There are presently no established standards for accuracy and precision of such submissions—and there hardly could be, as presently such submissions are voluntary—nor is there any funded entity to evaluate O/O ephemerides to certify their validity. Because O/O ephemerides truly are necessary for credible orbital safety calculations for on-orbit spacecraft that can intentionally change their trajectories, the orbital safety civil agency will quite likely need to work with the FAA and FCC to establish the regular furnishing of this information as a requirement for obtaining a launch or spectrum allocation license; and they will need to establish a capability to evaluate O/O ephemerides to ensure that they meet needed accuracy and precision requirements to enable credible orbital safety calculations. Because both government and private actors will be relying on these O/O data and calculations for critical safety decisions, this type of certification activity includes elements of an inherently governmental function and should expect to be performed either internal to the government or by an independent entity that is free of any financial interest in the outcome.

The Orbital Safety Process

The process of determining whether protected satellite assets are likely to collide with any other space objects, and guiding mitigating actions to avoid any such collisions, comprises three distinct parts:

I. Conjunction Screenings predict the orbits of a protected satellite and all other satellites in the space catalogue several days forward into the future and look for close approaches between them. For any satellites that are expected to come within a particular proximity threshold (which varies by orbit type) to the protected satellite, the states and uncertainties for both objects at the time of closest approach, as well as some other amplifying information, are used to generate a conjunction data message (CDM), which is then dispatched to the protected satellite's O/O.

Receiving a CDM might be considered analogous to the "check engine" light coming on in one's vehicle. It does not mean that an enduring problem exists—indeed, the light (if the author's experience is any guide) often goes off after a few minutes and then stays off; but if it stays on, then it would be wise to take the car to a mechanic to examine the situation more closely. Similarly, receipt of a CDM, especially several days before the time of closest approach, does not indicate an immanent collision; but if CDMs continue to arrive and the predicted proximity between the two satellites remains disturbingly small, then it is prudent to proceed to the next step of the process to see if a durable problem actually exists.

II. Risk Assessment is the careful examination of the CDM history to determine if the conjunction actually represents a high-risk situation. A specialized set of calculations are performed, based on the data in the CDM, to determine both the likelihood of an actual collision, generally expressed as a probability of collision; and the consequence of collision, generally expressed as the number of trackable pieces of debris that would be generated were the conjunction to result in a collision. Examining these results in the overall context of the event establishes whether the conjunction manifests enough of a safety risk that a mitigation action should be pursued.

The risk assessment step is analogous to taking one's vehicle to the mechanic after the "check engine" light has persisted for some time. The mechanic examines the situation and determines if there is a problem that merits actual repair or whether the warning light is just calling attention to something that is not particularly serious. The courses of action here are not always cut-and-dried: a driver who is risk-adverse and truly wants to avoid being stranded by a breakdown may choose to proceed with repairs that are only marginally necessary; a driver who is risk-tolerant may decline such repairs as not required at the present time. The same sorts of discussions occur between orbital safety risk assessment specialists and satellite O/Os regarding the appropriateness of mitigation actions.

III. Mitigation Planning is the identification of a trajectory change to the protected satellite, in response to a worrisome risk assessment from Part II, that will both avoid the

risky conjunction and not introduce any new risky conjunctions. Typically this involves generating trade-spaces that allow O/Os to see what different satellite maneuvers executed at different times might achieve in terms of reducing overall collision likelihood, allowing them to choose a maneuver that resolves the current orbital safety problem and aligns with other satellite mission objectives.

This step is analogous to a mechanic's actually making repairs on a vehicle. Through discussions, the owner and mechanic decide precisely which of several different repair actions are to be pursued, and the repairs are then accomplished. Similarly, the risk assessment specialist and the O/O decide on the actual mitigation action, which the O/O then realizes as a formal maneuver plan.

Orbital Safety Process Transition

There are a number of different ways that the transition of the USG's support of the civil and commercial orbital safety mission from the DoD to a civilian agency can be accomplished. The particular approach described below, which treats the transition of the three different parts of the process separately, appears to the author to present the lowest transition risk, to enable operational responsibility by the civil agency most rapidly, and to further the competing goals of the overall transition in a balanced way.

In discussing Part I (numeration from previous section), which is the conjunction screening process that results in production of CDMs, it is important to note that this represents the entirety of what the DoD provides to civil and commercial entities for orbital safety—the DoD does not provide risk assessment or mitigation planning assistance (Parts II and III). So in discussing the "transition" of the orbital safety mission from DoD to a civil agency, it is really only Part I that is a candidate for transition; if it is desired that the civil agency provide the Parts II and III services, then such a capability will need to be implemented *ab initio*. But in the presence of the DoD space catalogue, the execution of conjunction screenings and the production of CDMs is a straightforward process, driven by a single DoD algorithm set that has sustained full numerical validation and well over a decade of operational exercise.

The first step in an orbital safety transition from DoD to a civil agency is thus to transfer the Part I capabilities from DoD and implement them as presently formulated (with appropriate minor modifications for changes in computer architecture) and an improved portal for data exchanges with satellite O/Os and other organizations. An unclassified version of the DoD Space Catalogue, along with certain additional supporting files, can be exported from the DoD operational database, run through a further declassification procedure, and transferred to the civil agency at regular intervals each day. The DoD algorithm set for orbital safety screenings can then be run on the civil agency system and used to generate CDMs, which can be distributed through a modern distribution portal.

This approach confers a number of advantages. It is known that the DoD data export procedure described above can be accomplished because it is presently used in exactly this same form to declassify and transfer the DoD space catalogue to another civil agency multiple times

per day. The DoD algorithm is highly parallelized, so improved computational performance can be achieved easily by adding additional computational capability. A first step of simply preserving existing capability but with faster turn-around times and an improved user interface is a prudent confidence-building measure with O/Os. Finally, an initial goal that is not overly technically challenging is a good setting for working through the attendant bureaucratic encumbrances and difficulties that transitions such as this invariably engender.

Both the research community and private industry presently offer orbital safety screening algorithms that would appear to be equally accurate to the DoD algorithm yet more computationally efficient. The civil agency would be encouraged to investigate such algorithms and potentially pursue a future upgrade, but a change of the basic algorithm for orbital safety screenings is not recommended until after the transition is complete. Once an R&D evaluation environment is stood up (to be discussed later) and the DoD screening algorithm transitioned and thus available to use as a benchmark for both screening accuracy and performance, then the civil agency will be in a good position to evaluate potential screening algorithmic improvements. But taking on a major numerical validation effort to certify a new algorithm to serve as the core of the orbital safety mission in the midst of a transition activity is seen as unwise.

As remarked earlier, the activities that represent Parts II and III of the orbital safety process (risk assessment and mitigation planning) are not presently performed by the DoD for civil and commercial O/Os. A variety of different sources of solutions are pursued instead: some O/Os limp along with almost no regularized risk assessment and mitigation planning services at all; some have small in-house services for these functions; some contract with third-party commercial providers; and some organizations have enterprise-level solutions for this for all of their missions, examples of which include NASA and the EUSST (European Union Space Surveillance and Tracking Support).

Because of the highly federated set of possibilities for Parts II and III, and because there is already a significant set of commercial vendors presently performing these functions, the situation seems a natural fit for the "advanced services" concept," for which O/Os contract for such services with a vendor of their choice. A role for private industry would fit especially well here because a substantial component of risk assessment and mitigation planning assistance could be described as "bedside manner"—helping to walk the O/O through the risk assessment / mitigation process; interpreting data and calculations that can often be both daunting to understand and initially alarming in their implications; and providing a structured decision framework, especially for events that may develop quickly and thus require rapid decision-making. Additionally, an advanced service could duplicate a basic service but render it with more flexibility and lower latency. For example, if the basic conjunction screening service offered by the civil agency preserved the DoD approach of performing collision screenings (Part I) only once every eight hours, an O/O who wished on-demand screening results might be able to obtain this with a purchased advanced service, presuming that the service provider was in some way able to arrange for access to the civil agency's space catalogue.

Since the DoD does not perform the Part II and III activities, the orbital safety civil agency will need to decide what posture they wish to take towards these activities. They could take a completely *laissez-faire* attitude much as the DoD has done, they could facilitate such

industry-provided services by allowing vendors to offer these services through the civil agency's user interface portal and (with O/O permission) enabling such vendors to obtain appropriate CDM and other data directly, or they could also provide some of the basic risk assessment calculations as part of the CDM as an enhancement to the DoD basic ("free of user fees") service. Both budget constraints and a desire to avoid competing with private industry would counsel against the government's providing too many of the Part II and III activities as part of the basic service; but there are a few small calculations that could be performed to improve the orbital safety decision-making of budget satellite operators without undermining demand for higher-end services, especially since the complexity of the orbital safety topic will ensure an abiding demand for the "bedside attendant" aspect of services for those with expensive assets at stake.

Needed Improvement: Orbital Safety for Autonomously-Controlled Satellites

A major advance in satellite flight dynamics technology has recently been realized in the area of autonomous satellite control—the ability for satellites to maintain and operate in a specified orbit entirely through on-board algorithms, without any human or computer intervention from satellite ground control. Such autonomous capabilities can even include orbital safety. The world's largest satellite constellation, SpaceX's two-thousand-spacecraft Starlink fleet, operates with this paradigm: at each ground contact, each satellite downlinks its intended future trajectory, this trajectory is submitted to the DoD for conjunction screening, the CDMs generated from the screening are returned to SpaceX and uploaded to the satellite, and the satellite makes its own risk assessment and mitigation decisions, without any involvement from ground control. This orbital safety approach is workable, albeit with some restrictions, as part of the current broader orbital safety ecosystem, but with one substantial exception: the advent of two autonomously-controlled constellations operating in proximity to each other. In such a case, which has not yet arisen commercially but surely is not far away, when two satellites from different autonomously-controlled constellations come into a high-risk conjunction with each other, how is the conjunction resolved? Neither satellite knows what the other satellite's intentions are, and there is no expedited communications path by which to exchange such information; so there is a very real possibility that the two satellites could both elect to maneuver and both choose maneuvers that in the end cause them to collide. Such an outcome may seem far-fetched, but it is not: the well-known Iridium-COSMOS satellite collision event of 2009, which produced over 2000 pieces of catalogued debris, took place because, due to the primitive nature of orbital safety operations at that time, the Iridium satellite unwittingly maneuvered into the COSMOS oncoming trajectory. A number of possible solutions have been proposed within the discipline; and the intersection of policy, supporting technical analysis, and interagency cooperation needed develop a durable solution that will be both transparent and recognizably fair, and integrate this solution into the FAA/FCC licensing process, will of course present a number of challenges. The civil agency acquiring the orbital safety mission must recognize that the technical solution for calculating and distributing orbital safety data is really the ten-minute overture to the five-hour Wagnerian opera of policy questions and satellite norms-of-behavior development required in order to ensure safe operation of an enterprise that is changing and developing at a dizzying rate.

Commercial SSA Data

As remarked previously, there is now a robust commercial industry, with multiple independent providers, of commercial SSA data, offering data products that include sensor tracking data on satellites, solved-for orbits, and predicted ephemerides. There are also non-commercial sources of such data upon which the civil agency could potentially make arrangements to draw, such as data collected by the SSA capabilities of the European Union or those of other emerging SSA actors such as Australia. Because it is in general correct to state that increasing the amount of quality data available to the orbital safety enterprise will improve the orbital safety calculations, there is a natural expectation that the civil agency should make broad use of these additional data sources in order to realize such improvements. In the main, this expectation is informed and reasonable; but there are a number of important caveats and limitations that should be considered.

First, for objects that already receive substantial tracking, such as large objects in LEO, and which do not maneuver frequently, additional tracking from non-DoD sources is unlikely to make a meaningful improvement in the quality of orbital safety products. These products are influenced most strongly by decreases in the uncertainty associated with satellite state estimates, and for well-tracked objects the state uncertainty decreases roughly with the square root of the number of measurements used in orbit determination; this means that for objects that already receive a large number of such measurements, the marginal improvement of adding additional data is very small. Efforts to obtain additional SSA data should therefore focus on orbits and objects that presently experience a paucity of tracking data, as this is where meaningful improvements from such additional data will be observed.

Second, there is a mismatch between the kinds of SSA data that would be most easily integrated with the DoD data to produce composite orbital safety calculations and what the commercial SSA sector is likely to offer for sale. There is broad agreement among astrodynamicists that the best technical solution to merging DoD and commercial SSA data is to obtain the sensor tracking data from both DoD and commercial sources and combine them in a single orbit determination process, performed at a single operations center. Unfortunately, this superior technical solution is also the most challenging from an economic perspective. Selling individual measurements to the USG, especially if the measurements can then be redistributed throughout the USG for multiple uses by different agencies and also inform orbital safety products that are then distributed free of charge by the orbital safety civil agency, cuts against the business models for the commercial SSA industry. There also has historically been a reluctance by the DoD to share or redistribute their sensor measurement data, which could potentially reveal vulnerabilities to adversaries.

If it is not possible to obtain and combine sensor measurement data, a plausible alternative is to purchase predicted satellite ephemerides from commercial providers and "fuse" these with an ephemeris generated from the DoD satellite catalogue in order to produce a single, presumably superior, ephemeris that can be used to represent a satellite's predicted future positions. There is developed astrodynamics theory outlining how such a fusion can be legitimately accomplished, although such constructs do not (yet) appear to have been tested on

any large scale. But what is known is that for this fusion approach to work, the uncertainty estimates contained in the purchased ephemerides must be highly reliable. Realistic state uncertainty estimation is one of the most difficult problems in orbit determination and prediction, and it is presently only rarely performed well. If an ephemeris-fusion approach to data combination is to be pursued, it will be necessary to empanel a group of astrodynamics subject matter experts to evaluate the fidelity of purchased ephemerides, both in-depth initially and continuously in a monitoring capacity, to ensure that that accuracy and precision of these products continue to meet standards necessary to produce meaningful fusion-based products. In alignment with previous comments about space catalogue validation, this activity is an inherently governmental function and must be performed by individuals or groups with no financial interest in the outcome.

Finally, it is claimed in some circles that a lack of adequate SSA data is the main problem facing the orbital safety mission presently and the principal reason that orbital safety "requirements" are not being met. While it is true that more SSA data is likely to be helpful to the enterprise, the calculations needed for collision risk assessment, especially when combined with the proper logical decision framework for determining the necessity of mitigation actions, are designed to be operable at a variety of different data abundance and quality levels. There are no particular levels of SSA data supply at which the calculations suddenly become relevant or actionable. Different data levels will change the counts and ratio of serious event false alarms and missed detections, but the desirable levels for these parameters is a matter of policy and cost-benefit analysis. Because in general more data translates to better orbital safety calculations, determining when sufficient SSA data are being secured will remain a prudential judgment.

Orbital Safety Research and Development

In the last decade, orbital safety has been an active area of both academic and industrial astrodynamics research. The scope of such research has been broad, with all areas of the discipline touched: improved screening algorithms; improved risk assessment paradigms, parameters, and calculations; improved decision support constructs, especially in anticipation of much larger satellite populations; and proposed satellite norms of behavior. An orbital safety agency should certainly wish to avail itself of all of these potential improvements; but at the same time it is extremely difficult to evaluate the rectitude of the claims made in research papers and studies, especially since in many cases the proposed constructs are tested only against simulated data.

One approach to facilitating the evaluation of the results of such research is to build into the civil agency's orbital safety system an experimental subdivision to allow the hosting of proposed algorithms or tools. Within this subdivision, experimental software could be run against a historical archive of SSA data (which could be simply the operational SSA data but with an enforced posting delay of weeks or months in order to nullify any current operational relevance) and compared to baseline results, as well as the calculations from other experimental tools. Such an arrangement could substantially facilitate the evaluation of proposed replacements for the core algorithms that are part of the free orbital safety service (thus allowing the free service to evolve in accuracy and efficiency), and it could also serve as a venue for

advanced services to establish and demonstrate their capabilities to potential O/O customers. Because the space environment is changing so rapidly and the orbital safety discipline is so dynamic, it is recommended that the civil agency orbital safety system contain from its very beginning this accommodation for testing and demonstration of new capabilities.

Conclusion

There is indeed a myriad of issues associated with the transition of the USG's support of the civil and commercial orbital safety mission from the DoD to a civil agency; and for this reason, a step-based approach that deliberately avoids overreach in each such phase is seen as the most promising. The first such step is the transition of the catalogue screening and CDM generation mission from the DoD to a civil agency, using a declassified version of the DoD space catalogue and a rehosted version of this single DoD algorithm, with small modifications to place it in a modern computer architecture with a similarly modern communications interface. Once this duplication of the current DoD capability is in place, accommodation for advanced services to provide conjunction risk assessment and mitigation action planning assistance can be made, probably through the civil agency's automated communications interface and perhaps with expedited access to certain catalogue and O/O CDM data. Once this aspect of the architecture is established and working, the question of commercial data use, which will have been a subject of study in parallel with the architecture efforts described above, can be addressed in full, with appropriate data purchases and validation activities taking place contemporaneously. The study efforts will have identified which orbital regions and objects will benefit most substantially from commercial data augmentation and will have resolved the question of whether measurement data should be acquired or whether fusion of ephemerides is a viable and desirable alternative procedure. Alongside all of this activity, the roll-out of the civil agency's orbital safety system will have included an R&D physical/virtual sector, which can be used both for the commercial data study efforts mentioned above and to evaluate the benefits of improved algorithms and approaches for all of the aspects of the orbital safety enterprise. Finally, while all of these transition activities are indeed important, in many respects they are overshadowed by the great need to establish standards, guidelines, and norms of behavior for safe satellite operations. Even with a civil capability successfully producing and distributing safety alerts and data, there is no clear guidance outlining what O/Os should do with such data, how they should negotiate hazardous situations, and what data products they have an obligation to provide in order to contribute to the safety of the entire enterprise. Such a civil agency's supervening task must be to develop, in consultation with all affected parties, reasonable and analytically-grounded standards, guidelines, and norms of behavior for safe satellite operation; and they must integrate these into the launch and spectrum allocation process so that they become a formal part of an O/O's operating instructions. It is only then that space actors will both fully understand their responsibilities and be equally fully motivated to fulfill them.

Curriculum Vitæ

MATTHEW D. HEJDUK

EDUCATION

Ph.D., University of Dallas, Philosophy, 2006
Thesis: Hegel, Kierkegaard, and the Limits of Rationality
M.A., University of Dallas, Philosophy, 1998
M.T.S., Southern Methodist University, 1995, magna cum laude
B.S.E., Princeton University, Mechanical Engineering, 1989, cum laude

PROFESSIONAL EXPERIENCE

Senior Project Leader, The Aerospace Corporation (2021-present)

Current position: Chief Engineer, NASA Satellite Conjunction Analysis Risk Assessment Program

President, Astrorum Consulting LLC (www.astrorum.us), 2014 – present

Adjunct Scientist, a.i. solutions Inc., 2010 – 2014

Adjunct Scientist, SRA Inc., 2006 – 2010

Senior Systems Engineer, L3 Technologies, 2002 – 2006

Systems Engineer, SenCom Corporation, 1993 – 2002

Acquisition Officer, USAF, 1989 – 1993

RESEARCH INTERESTS

Satellite conjunction assessment techniques Satellite radar and optical signature modeling and analysis Estimation theory Space Surveillance Network modeling and simulation

ARTICLES/PAPERS - LEAD AUTHOR

Hejduk, M.D., and Snow, D.E. "Satellite Conjunction 'Probability,' 'Possibility,' and 'Plausibility': A Categorization of Competing Conjunction Assessment Risk Analysis Paradigms." 2019 AAS/AIAA Astrodynamics Specialist Conference (Paper #19-652), Portland ME, August 2019.

Hejduk, M.D., Snow, D.E., and Newman, L.K. "Satellite Conjunction Assessment Risk Analysis for "Dilution Region" Events: Issues and Operational Approaches." Fifth Annual Space Traffic Management Conference "Progress through Collaboration, Austin TX, February 2019.

- Hejduk, M.D. and Snow, D.E. "The Effect of Neutral Density Estimation Errors on Satellite Conjunction Serious Event Rates." *Space Weather* Vol. 16 No. 7 (July 2018), pp. 849-869.
- Hejduk, M.D. and Pachura, D.A. "Conjunction Assessment Screening Volume Sizing and Event Filtering in Light of Natural Conjunction Event Development Behaviors." 2017 AAS/AIAA Astrodynamics Specialists Conference, Stevenson WA, August 2017.
- Hejduk, M.D., Laporte, F., Moury, M., Kelso, T.S., Newman, L.K., and Shepperd, R. "Consideration of Collision 'Consequence' in Satellite Conjunction Assessment and Risk Analysis." 26th International Symposium on Space Flight Dynamics, Matsuyama, Japan, June 2017.
- Hejduk, M.D. "Covariance Manipulation for Conjunction Assessment." 2016 AAS/AIAA Astrodynamics Specialist Conference, Long Beach CA, September 2016.
- Hejduk, M.D. and Johnson, L.C. "Approaches to Evaluating Probability of Collision Uncertainty." 2015 AAS/AIAA Space Flight Mechanics Meeting, Napa CA, February 2015.
- Hejduk, M.D., Newman, L.K., Besser, R.L. and Pachura, D.A. "Predicting Space Weather Effects on Close Approach Events." 2015AMOS Technical Conference, Kihei HI, September 2015.
- Hejduk, M.D., Plakalovic, D., Newman, L.K., Ollivierre, J.C., Hametz, M.E., Beaver, B.A., and Thompson, R.C. "Recommended Risk Assessment Techniques and Thresholds for Launch COLA Operations." 2013 AAS/AIAA Space Flight Mechanics Meeting, Hilton Head, SC. August 2013.
- Hejduk, M.D., Casali, S.J., Cappellucci, D.A., Ericson, N.L., and Snow, D.E. "A Catalogue-Wide Implementation of General Perturbations Orbit Determination Extrapolated from Higher-Order Theory Solutions." 2013 AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI. February 2013.
- Hejduk, M.D., Plakalovic, D., Newman, L.K., Ollivierre, J.C., Hametz, M.E., Beaver, B.A., and Thompson, R.C. "Trajectory Error and Covariance Realism for Launch COLA Operations." 2013 AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI. February 2013.
- Hejduk, M.D., Cowardin, H.M., and Stansbery, E.G. "Satellite Material Type and Phase Function Determination in Support of Orbital Debris Size Estimation." 2012 AMOS Technical Conference, Kihei, HI. September 2012.
- Hejduk, M.D. "Specular and Diffuse Components in Spherical Satellite Photometric Modeling." 2011 AMOS Technical Conference, Kihei, HI. September 2011.
- Hejduk, M.D. and Ghrist, R.W. "Solar Radiation Pressure Binning for the Geosynchronous Orbit." 2011 AAS Astrodynamics Specialists Conference, Girdwood, AK. August 2011.
- Hejduk, M.D. and DePalma, D. "Comprehensive Radar Cross-Section 'Target Typing' Investigation for Spacecraft." 2010 AAS Astrodynamics Specialists Conference, Toronto, CA. August 2010.
- Hejduk, M.D. "Improved Radar Cross-Section 'Target Typing' for Spacecraft." *Advances in the Astronautical Sciences*, Vol. 135 (August 2009), pp. 3-17.

- Hejduk, M.D. "Space Catalogue Accuracy Modeling Simplifications." 2008 AAS Astrodynamics Specialists Conference, Honolulu, HI, August 2008.
- Hejduk, M.D. "Phase Functions of Deep-Space Orbital Debris." 2007 AMOS Technical Conference, Kihei, HI. September 2007.
- Hejduk, M.D., Ericson, N.L., and Casali, S.J. "Beyond Covariance: A New Accuracy Assessment Approach for the 1SPCS Precision Satellite Catalogue." 2006 MIT / Lincoln Laboratory Space Control Conference, Bedford, MA. May 2006
- Hejduk, M.D. "RCS Calculation Improvements at the Eglin FPS-85 Radar." 2005 MIT / Lincoln Laboratory Space Control Conference, Bedford, MA. April 2005.
- Hejduk, M.D., Lambert, J.V., Williams, C.M, and Lambour, R.L. "Satellite Detectability Modeling for Optical Sensors." 2004 AMOS Technical Conference, Kihei, HI. September 2004.
- Hejduk, M.D. "Statistical Distributions of SP DC Residuals." 2004 MIT / Lincoln Laboratory Space Control Conference, Bedford, MA. April 2004.
- Hejduk, M.D., Lambert, J.V., Williams, C.M, and Lambour, R.L. "Improved Satellite Brightness Estimation Techniques." 2003 AMOS Technical Conference, Kihei, HI. September 2003.
- Hejduk, M.D. and Lambert, J.V. "Statistical Distributions of Object RCS Histories." 2003 MIT / Lincoln Laboratory Space Control Conference, Bedford, MA. April 2003.
- Hejduk, M.D. "Composite RCS Catalogue". 2002 MIT / Lincoln Laboratory Space Control Conference, Bedford, MA. April 2002.
- Hejduk, M.D., Kervin, P.W., Lambert, J.V., Stansbery, E.G., Africano, J.L., and Pearce, E.C. "Visual Magnitude Satellite Catalogue Release 1.0." 2001 AMOS Technical Conference, Kihei, HI. September 2001.
- Hejduk, M.D., Sousa, M.W., Snow, D.E., and Daw, R.S. "SP/GP Catalogue Accuracy: Technical Approach and Initial Results." 2001 MIT / Lincoln Laboratory Space Control Conference, Bedford, MA. April 2001.
- Hejduk, M.D. "Region-specific Space Catalogue Growth." 15ème Symposium International: Mecanique Spatiale; Centre National d'Études Spatiales, Biarritz, France. July 2000
- Hejduk, M.D. and Daw, R.S. "Space Catalogue Growth Model for Simulations." 2000 MIT / Lincoln Laboratory Space Control Conference; Bedford, MA. April 2000.
- Hejduk, M.D. "SPADOC IV Unassociated Observation Flow." 1993 MIT / Lincoln Laboratory Space Control Conference; Bedford, MA. April 1993. (unclassified typescript available)

ARTICLES/PAPERS - SUPPORTING AUTHOR

- Mashiku, A.K. and Hejduk, M.D. "Recommended Methods for Setting Mission Conjunction Analysis Hard Body Radii." 2019 AAS Astrodynamics Specialist Conference (Paper #19-702), Portland ME, August 2019.
- Lechtenberg, T. F., and Hejduk, M. D. "Assessment and Validation of Collision 'Consequence' Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions." 2019 Hypervelocity Impact Symposium, Destin FL, March 2019, HVIS2019-061.
- Casali, S., Hall, D., Snow, D., Hejduk, M., Johnson, L., Skrehart, B., and Baars, L. "Effect of Cross-Correlation of Orbital Error on Probability of Collision Determination." 2018 AIAA/AAS Astrodynamics Specialist Conference (Paper # AAS 18-272), Snowbird UT, August 2018.
- Hall, D.T., Hejduk, M.D., and Johnson, L.C. "Remediating Non-Positive-Definite State Covariances for Collision Probability Estimation." 2017 AAS/AIAA Astrodynamics Specialist Conference, Stevenson WA, August 2017.
- Carpenter, J.R., Alfano, S., Hall, D.T., Hejduk, M.D., Gaebler, J.A., Jah, M.K., Hasan, S.O., Besser, R.L., DeHart, R.R., Duncan, M.G., Herron, M.S., and Guit, W.J. "Relevance of the American Statistical Society's Warning on p-Values for Conjunction Assessment." 2017 AAS/AIAA Astrodynamics Specialists Conference (paper # 17-614), Stevenson WA, August 2017.
- Hall, D.T., Hejduk, M.D., and Johnson, L.C. "Time Dependence of Collision Probabilities during Satellite Conjunctions." 2017 AAS Space Flight Mechanics Meeting, San Antonio TX, February 2017.
- Newman, L.K., Hejduk, M.D., and Johnson, L.C. "Operational Implementation of a Pc Uncertainty Construct for Conjunction Assessment Risk Analysis." 2016 AMOS Technical Conference, Kihei HI, September 2016.
- Zaidi, W.H. and Hejduk, M.D. "EOS System Covariance Realism." 2016 AAS/AIAA Astrodynamics Specialist Conference, Long Beach CA, September 2016.
- Vallejo, J.J., Hejduk, M.D., and Stamey, J.D. "Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model." 25th International Symposium on Space Flight Dynamics, Munich Germany, October 2015.
- Frigm, R.C., Hejduk, M.D., Johnson, L.C. and Plakalovic, D. "Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management." 2015AMOS Technical Conference, Kihei HI, September 2015.
- Vallejo, J.J., Hejduk, M.D., and Stamey, J.D. "CA Risk Trending Using a Simple Functional Model in a Bayesian Framework." 2014 AAS Astrodynamics Specialist Conference, Vail CO, August 2015.
- Newman, L.K., Frigm, R.C., Duncan, M.G., and Hejduk, M.D. "Evolution and Implementation of the NASA Robotic conjunction Assessment Risk Analysis Concept of Operations." 2014 AMOS Technical Conference, Kihei HI, September 2014.

- Horwood, J.T., Aristoff, J.M., Singh, N., Poore, A.B., and Hejduk, M.D. "Beyond Covariance Realism: a New Metric for Uncertainty Realism." *SPIE Proceedings: Signal and Data Processing of Small Targets* 2014, vol. 9092, 2014.
- Yocom, M.R. and Hejduk, M.D. "Satellite Persistent Monitoring Assessment Metrics." 2013 MIT Lincoln Laboratory Space Control Conference, Bedford, MA. April 2013.
- Plakalovic, D., Hejduk, M.D., and Frigm, R.C. "A Tuned Single Parameter for Representing Conjunction Risk." 2011 AAS Astrodynamics Specialists Conference, Girdwood, AK. August 2011.
- Narvet, S., Frigm, R.C., and Hejduk, M.D. "Assessment of Uncertainty-based Screening Volumes for NASA Robotic Leo and GEO Conjunction Risk Assessment." 2011 AAS Astrodynamics Specialists Conference, Girdwood, AK. August 2011.
- Mulrooney, M.K., Matney, M.J., Hejduk, M.D., and Barker, E.S. "An Investigation of Global Albedo Values." 2008 AMOS Technical Conference, Kihei, HI. September 2008.
- Gow, C.E., Eaves, S., and Hejduk, M.D. "The Visual Magnitude Distribution and Optical Variability of LEO Space Objects." 2005 AMOS Technical Conference, Kihei, HI. September 2005.
- Okada, J.M. and Hejduk, M.D. "Satellite Brightness Estimation using Kriging Optimized Interpolation." 2005 AMOS Technical Conference, Kihei, HI. September 2005
- Lambert, J.V. and Hejduk, M.D. "Observed Optical Brightness Distributions of Deep Space Satellites". 2002 AMOS Technical Conference, Kihei, HI. September 2002.
- Daw, R.S. and Hejduk, M.D. "Determining SSN Operational System Capability (SYSCAP)." 1999 MIT / Lincoln Laboratory Space Control Conference; Bedford, MA. April 1999.

INVITED LECTURES

- Hejduk, M.D. "Effects of Atmospheric Neutral Density Mismodeling on Satellite Conjunction Assessment." NOAA 2017 Space Weather Workshop, Broomfield CO, May 2017.
- Hejduk, M.D. "Approaches to Defining Uncertainty Bounds for Probability of Collision Calculations." Department of Aerospace Engineering, University of Texas at Austin. April 2016.
- Hejduk, M.D. "Spacecraft Collision Probability: Problems in Uncertainty Modeling." Department of Statistics, Baylor University. September 2013.
- Hejduk, M.D. and Snow, D.E. "Deterministic/Stochastic Satellite Brightness Modeling." Center for Astrophysics, Space Physics, and Engineering Research, Baylor University. February 2008.
- Hejduk, M.D. "Approaches to Satellite Characterization: the Deterministic/Stochastic Divide." American Statistical Association Conference on Quantitative Methods and Statistical Applications in Defense and National Security, Santa Monica, CA. February 2006.

TEACHING EXPERIENCE

ENG 2v97: Innovation in Engineering (Baylor University), 2016

PHI 4341/5341: Continental Philosophy (Baylor University), 2008 – 2009

GTX 2302: Medieval Intellectual Tradition (Baylor University), 2008

PHI 2300: Introduction to Philosophy (University of Texas at Arlington), 2001 – 2002

PHI 1301: Philosophy and the Ethical Life (University of Dallas), 2000

PROFESSIONAL SERVICE AND ASSOCIATIONS

Technical submission evaluator, Acta Astronautica

Technical submission evaluator, Advances in Space Research

Technical submission evaluator, Journal of the Astronautical Sciences

Technical submission evaluator, Journal of Guidance, Control, and Dynamics

Technical submission evaluator, Journal of Space Safety Engineering

Technical submission evaluator, Journal of Spacecraft and Rockets

Technical submission evaluator, *Proceedings of the Royal Society A (Mathematical, Physical, and Engineering Sciences)*

Technical submission evaluator, *Space Weather: A Journal of the American Geophysical Union* Grant application evaluator, National Sciences and Engineering Research Council of Canada Grant application evaluator, Air Force Office of Scientific Research

Senior Member, American Institute of Aeronautics and Astronautics Senior Member, American Astronautical Society

SENIOR COMMITTEES AND EXPERT PANELS

International Astronautical Federation Space Traffic Management Committee (2020-21)

NASA "Living with a Star" (LWS) expert panel on neutral atmospheric density modeling (2016)

Air Force Space Command Astrodynamics Innovation Committee; scientific peer review panel (2014 – 2019)

Air Force Space Command Astrodynamics Innovation Committee; working group on covariance realism (2014 – 2019)

COMMUNITY INVOLVEMENT

Undergraduate applicant interviewer, Princeton University, 2010 – present Board of Directors member and Chairman, YMCA of Central Texas, 2011 – 2018 Volunteer of the Year, Habitat for Humanity Waco, 2016 Music Director, St. Gregory Society, Waco TX, 2007 – present