AMENDMENT IN THE NATURE OF A SUBSTITUTE TO H.R. 1735 OFFERED BY Mr. Baird

Strike all after the enacting clause and insert the following:

1	SECTION 1. SHORT TITLE.
2	This Act may be cited as the "Mathematical and Sta-
3	tistical Modeling Education Act".
4	SEC. 2. MATHEMATICAL AND STATISTICAL MODELING EDU-
5	CATION.
6	(a) FINDINGS.—Congress finds the following:
7	(1) The mathematics taught in schools, includ-
8	ing statistical problem solving and data science, is
9	not keeping pace with the rapidly evolving needs of
10	the public and private sector, resulting in a STEM
11	skills shortage and employers needing to expend re-
12	sources to train and upskill employees.
13	(2) According to the Bureau of Labor Statis-
14	tics, the United States will need 1,000,000 addi-
15	tional STEM professionals than it is on track to
16	produce in the coming decade.
17	(3) The field of data science, which is relevant
18	in almost every workplace, relies on the ability to

1	work in teams and use computational tools to do
2	mathematical and statistical problem solving.
3	(4) Many STEM occupations offer higher
4	wages, more opportunities for advancement, and a
5	higher degree of job security than non-STEM jobs.
6	(5) The STEM workforce relies on computa-
7	tional and data-driven discovery, decision making,
8	and predictions, from models that often must quan-
9	tify uncertainty, as in weather predictions, spread of
10	disease, or financial forecasting.
11	(6) Most fields, including analytics, science, eco-
12	nomics, publishing, marketing, actuarial science, op-
13	erations research, engineering, and medicine, require
14	data savvy, including the ability to select reliable
15	sources of data, identify and remove errors in data,
16	recognize and quantify uncertainty in data, visualize
17	and analyze data, and use data to develop under-
18	standing or make predictions.
19	(7) Rapidly emerging fields, such as artificial
20	intelligence, machine learning, quantum computing
21	and quantum information, all rely on mathematical
22	and statistical concepts, which are critical to prove
23	under what circumstances an algorithm or experi-
24	ment will work and when it will fail.

1	(8) Military academies have a long tradition in
2	teaching mathematical modeling and would benefit
3	from the ability to recruit students with this exper-
4	tise from their other school experiences.
5	(9) Mathematical modeling has been a strong
6	educational priority globally, especially in China,
7	where participation in United States mathematical
8	modeling challenges in high school and higher edu-
9	cation is orders of magnitude higher than in the
10	United States, and Chinese teams are taking a ma-
11	jority of the prizes.
12	(10) Girls participate in mathematical modeling
13	challenges at all levels at similar levels as boys, while
14	in traditional mathematical competitions girls par-
15	ticipate less and drop out at every stage. Students
16	cite opportunity for teamwork, using mathematics
17	and statistics in meaningful contexts, ability to use
18	computation, and emphasis on communication as
19	reasons for continued participation in modeling chal-
20	lenges.
21	(b) DEFINITIONS.—In this section:
22	(1) DIRECTOR.—The term "Director" means
23	the Director of the National Science Foundation.
24	(2) FEDERAL LABORATORY.—The term "Fed-
25	eral laboratory" has the meaning given such term in

1	section 4 of the Stevenson-Wydler Technology Inno-
2	vation Act of 1980 (15 U.S.C. 3703).
3	(3) FOUNDATION.—The term "Foundation"
4	means the National Science Foundation.
5	(4) Institution of higher education.—The
6	term "institution of higher education" has the
7	meaning given such term in section 101(a) of the
8	Higher Education Act of 1965 (20 U.S.C. 1001(a)).
9	(5) MATHEMATICAL MODELING.—The term
10	"mathematical modeling" has the meaning given the
11	term in the 2019 Guidelines to Assessment and In-
12	struction in Mathematical Modeling Education
13	(GAIMME) report, 2nd edition.
14	(6) OPERATIONS RESEARCH.—The term "oper-
15	ations research" means the application of scientific
16	methods to the management and administration of
17	organized military, governmental, commercial, and
18	industrial processes to maximize operational effi-
19	ciency.
20	(7) STATISTICAL MODELING.—The term "sta-
21	tistical modeling" has the meaning given the term in
22	the 2021 Guidelines to Assessment and Instruction
23	in Statistical Education (GAISE II) report.
24	(8) STEM.—The term "STEM" means the aca-
25	demic and professional disciplines of science, tech-

1	nology, engineering, and mathematics, including
2	computer science.
3	(e) Preparing Educators To Engage Students
4	IN MATHEMATICAL AND STATISTICAL MODELING.—The
5	Director shall make awards on a merit-reviewed, competi-
6	tive basis to institutions of higher education, and nonprofit
7	organizations (or a consortium thereof) for research and
8	development to advance innovative approaches to support
9	and sustain high-quality mathematical modeling education
0	in schools operated by local educational agencies, including
11	statistical modeling, data science, operations research, and
12	computational thinking. The Director shall encourage ap-
13	plicants to form partnerships to address critical transi-
14	tions, such as middle school to high school, high school
15	to college, and school to internships and jobs.
16	(d) Application.—An entity seeking an award
17	under subsection (c) shall submit an application at such
8	time, in such manner, and containing such information as
19	the Director may require. The application shall include the
20	following:
21	(1) A description of the target population to be
22	served by the research activity for which such an
23	award is sought, including student subgroups de-
24	scribed in section 1111(b)(2)(B)(xi) of the Elemen-
25	tary and Secondary Education Act of 1965 (20

1	U.S.C. 6311(b)(2)(B)(xi)), and students experi-
2	encing homelessness and children and youth in fos-
3	ter care.
4	(2) A description of the process for recruitment
5	and selection of students, educators, or local edu-
6	cational agencies to participate in such research ac-
7	tivity.
8	(3) A description of how such research activity
9	may inform efforts to promote the engagement and
10	achievement of students in prekindergarten through
l 1	grade 12 in mathematical modeling and statistical
12	modeling using problem-based learning with contex-
13	tualized data and computational tools.
14	(4) In the case of a proposal consisting of a
15	partnership or partnerships with 1 or more local
16	educational agencies and 1 or more researchers, a
17	plan for establishing a sustained partnership that is
18	jointly developed and managed, draws from the ca-
19	pacities of each partner, and is mutually beneficial.
20	(e) Partnerships.—In making awards under sub-
21	section (e), the Director shall encourage applications that
22	include—
23	(1) partnership with a nonprofit organization or
24	an institution of higher education that has extensive
25	experience and expertise in increasing the participa-

1	tion of students in prekindergarten through grade
2	12 in mathematical modeling and statistical mod-
3	eling;
4	(2) partnership with a local educational agency,
5	a consortium of local educational agencies, or Tribal
6	educational agencies;
7	(3) an assurance from school leaders to making
8	reforms and activities proposed by the applicant a
9	priority;
10	(4) ways to address critical transitions, such as
11	middle school to high school, high school to college,
12	and school to internships and jobs;
13	(5) input from education researchers and cog-
14	nitive scientists, as well as practitioners in research
15	and industry, so that what is being taught is up-to-
16	date in terms of content and pedagogy;
17	(6) a communications strategy for early con-
18	versations with parents, school leaders, school
19	boards, community members, employers, and other
20	stakeholders; and
21	(7) resources for parents, school leaders, school
22	boards, community members, and other stakeholders
23	to build skills in modeling and analytics.
24	(f) USE OF FUNDS.—An entity that receives an
25	award under this section shall use the award for research

1	and development activities to advance innovative ap-
2	proaches to support and sustain high-quality mathe-
3	matical modeling education in public schools, including
4	statistical modeling, data science, operations research, and
5	computational thinking, which may include—
6	(1) engaging prekindergarten through grade 12
7	educators in professional learning opportunities to
8	enhance mathematical modeling and statistical prob-
9	lem solving knowledge, and developing training and
10	best practices to provide more interdisciplinary
11	learning opportunities;
12	(2) conducting research on curricula and teach-
13	ing practices that empower students to choose the
14	mathematical, statistical, computational, and techno-
15	logical tools that they will apply to a problem, as is
16	required in life and the workplace, rather than pre-
17	scribing a particular approach or method;
18	(3) providing students with opportunities to ex-
19	plore and analyze real data sets from contexts that
20	are meaningful to the students, which may include—
21	(A) missing or incorrect values;
22	(B) quantities of data that require choice
23	and use of appropriate technology;

1	(C) multiple data sets that require choices
2	about which data are relevant to the current
3	problem; and
4	(D) data of various types including quan-
5	tities, words, and images;
6	(4) taking a school or district-wide approach to
7	professional development in mathematical modeling
8	and statistical modeling;
9	(5) engaging rural local agencies;
10	(6) supporting research on effective mathe-
11	matical modeling and statistical modeling teaching
12	practices, including problem- and project-based
13	learning, universal design for accessibility, and ru-
14	brics and mastery-based grading practices to assess
15	student performance;
16	(7) designing and developing pre-service and in-
17	service training resources to assist educators in
18	adopting transdisciplinary teaching practices within
19	mathematics and statistics courses;
20	(8) coordinating with local partners to adapt
21	mathematics and statistics teaching practices to le-
22	verage local natural, business, industry, and commu-
23	nity assets in order to support community-based
24	learning;

Ţ	(9) providing hands-on training and research
2	opportunities for mathematics and statistics edu-
3	cators at Federal laboratories, institutions of higher
4	education, or in industry;
5	(10) developing mechanisms for partnerships
6	between educators and employers to help educators
7	and students make connections between their mathe-
8	matics and statistics projects and topics of relevance
9	in today's world;
10	(11) designing and implementing professional
11	development courses and experiences, including men-
12	toring for educators, that combine face-to-face and
13	online experiences;
14	(12) addressing critical transitions, such as
15	middle school to high school, high school to college,
16	and school to internships and jobs; and
17	(13) any other activity the Director determines
18	will accomplish the goals of this section.
19	(g) EVALUATIONS.—All proposals for awards under
20	this section shall include an evaluation plan that includes
21	the use of outcome oriented measures to assess the impact
22	and efficacy of the award. Each recipient of an award
23	under this section shall include results from these evalua-
24	tive activities in annual and final projects.
25	(h) Accountability and Dissemination.—

1	(1) EVALUATION REQUIRED.—The Director
2	shall evaluate the portfolio of awards made under
3	this section. Such evaluation shall—
4	(A) use a common set of benchmarks and
5	tools to assess the results of research conducted
6	under such awards and identify best practices;
7	and
8	(B) to the extent practicable, integrate the
9	findings of research resulting from the activities
10	funded through such awards with the findings
11	of other research on student's pursuit of de-
12	grees or careers in STEM.
13	(2) REPORT ON EVALUATIONS.—Not later than
14	180 days after the completion of the evaluation
15	under paragraph (1), the Director shall submit to
16	Congress and make widely available to the public a
17	report that includes—
18	(A) the results of the evaluation; and
19	(B) any recommendations for administra-
20	tive and legislative action that could optimize
21	the effectiveness of the awards made under this
22	section.
23	(i) Funding.—From amounts appropriated or other-
24	wise made available for the Directorate for STEM Edu-
25	cation of the National Science Foundation, the Director

1	shall allocate up to \$10,000,000 for each of fiscal years
2	2024 through 2028 to carry out this section.
3	SEC. 3. NASEM REPORT ON MATHEMATICAL AND STATIS-
4	TICAL MODELING EDUCATION IN PRE-
5	KINDERGARTEN THROUGH 12TH GRADE.
6	(a) Study.—Not later than 60 days after the date
7	of enactment of this Act, the Director shall seek to enter
8	into an agreement with the National Academies of
9	Sciences, Engineering and Medicine (in this section re-
10	ferred to as "NASEM") (or if NASEM declines to enter
11	into such an agreement, another appropriate entity) under
12	which NASEM, or such other appropriate entity, agrees
13	to conduct a study on the following:
14	(1) Factors that enhance or barriers to the im-
15	plementation of mathematical modeling and statis-
16	tical modeling in elementary and secondary edu-
17	cation, including opportunities for and barriers to
18	use modeling to integrate mathematical and statis-
[9	tical ideas across the curriculum, including the fol-
20	lowing:
21	(A) Pathways in mathematical modeling
22	and statistical problem solving from kinder-
23	garten to the workplace so that students are
24	able to identify opportunities to use their school
25	mathematics and statistics in a variety of jobs

1	and life situations and so that employers can
2	benefit from students' school learning of data
3	science, computational thinking, mathematics,
4	statistics, and related subjects.
5	(B) The role of community-based prob-
6	lems, service-based learning. and internships for
7	connecting students with career preparatory ex-
8	periences.
9	(C) Best practices in problem-, project-,
10	performance-based learning and assessment.
11	(2) Characteristics of teacher education pro-
12	grams that successfully prepare teachers to engage
13	students in mathematical modeling and statistical
14	modeling, as well as gaps and suggestions for build-
15	ing capacity in the pre-service and in-service teacher
16	workforce.
17	(3) Mechanisms for communication with stake-
18	holders, including parents, administrators, and the
19	public, to promote understanding and knowledge of
20	the value of mathematical modeling and statistical
21	modeling in education.
22	(b) Public Stakeholder Meeting.—In the course
23	of completing the study described in subsection (a),
24	NASEM or such other appropriate entity shall hold not

1	less than one public meeting to obtain stakeholder input
2	on the topics of such study.
3	(c) Report.—The agreement under subsection (a)
4	shall require NASEM, or such other appropriate entity,
5	not later than 24 months after the effective date of such
6	agreement, to submit to the Secretary of Education and
7	the appropriate committees of jurisdiction of Congress a
8	report containing—
9	(1) the results of the study conducted under
10	subsection (a);
11	(2) recommendations to modernize the proc-
12	esses described in subsection (a)(1); and
13	(3) recommendations for such legislative and
14	administrative action as NASEM, or such other ap-
15	propriate entity, determines appropriate.
16	(d) Funding.—From amounts appropriated or oth-
17	erwise made available for the Directorate for STEM Edu-
18	cation of the National Science Foundation, the Director
19	shall allocate up to \$1,000,000 for fiscal year 2024 to
20	carry out this section.
21	SEC. 4. LIMITATIONS.
22	(a) LIMITATION ON FUNDING.—Amounts made avail-
23	able to carry out sections 2 and 3 shall be derived from
24	amounts appropriated or otherwise made available to the
25	National Science Foundation.

15

- 1 (b) Sunset.—The authority to provide awards under
- 2 this Act shall expire on September 30, 2028.

