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Personal Introduction and Background: My name is William Tad Pfeffer. I am a glaciologist employed by 

the University of Colorado at Boulder, where I am a Professor of Civil, Environmental, and Architectural 

Engineering, and a Fellow of the University’s Institute of Arctic and Alpine Research (INSTAAR). I have 

been at UC Boulder for 31 years, and have been an active glaciological researcher for 40 years.  My 

particular sphere of expertise is in the study of the world’s “small” glaciers – meaning all of the world’s 

ca. 200,000 glaciers exclusive of the two ice sheets covering Greenland and Antarctica.  I have worked 

extensively in glaciological laboratory experiments, numerical modeling, and theoretical analysis, and 

have conducted hundreds of field expeditions over 35 years in the Continental USA, Alaska, Canadian 

Arctic, Svalbard, Greenland, Antarctica, the Himalayas, and Africa.  I have published over 60 papers in 

the refereed scientific literature, including several seminal and highly-cited studies of glacier physics and 

of global glacier contributions to sea level rise.  I served as a co-author of the 2012 National Research 

Council Report “Sea Level Rise for the Coasts of California, Washington, and Oregon: Past, Present, and 

Future.”  I was also a Lead Author for Chapter 13 (Sea Level Change) of the IPCC Fifth Assessment (AR5), 

Working Group 1, in 2013.  Most recently, I have shifted my focus to science planning and policy and to 

the historical development of glaciological and sea level research. Starting in 2013, I was a founding 

editor of the Oxford University Press Handbook Series on Planning for Climate Change Hazards. I also 

served in 2015-16 as a National Academy of Sciences Jefferson Fellow; in this capacity, I worked at 

USAID in Washington DC as a senior science advisor in the Office of Energy and Infrastructure, Europe 

and Eurasia. 

My testimony reflects my own views and scientific judgement, and does not represent the views or 

positions of any institution or agency, including the University of Colorado. 

While the potential for rapid sea level rise from the earth’s two major ice sheets tends to be the most 

visible sphere of snow and ice research, there are other issues of concern to glaciologists involving ice in 

its many forms at the earth’s surface.  Ranging from permafrost in Siberia and Alaska to seasonal river 

ice in New England, from seasonal snow in Colorado’s ski country to glacier lake outburst floods (or 

“GLOFs”) in the Himalayas, and from glacier-fed rivers in India to sea ice blocking shipping routes across 

the Canadian Northwest Passage, ice is a crucial element of our environment anywhere on earth where 

freezing occurs.  As temperatures rise, melting ice mobilizes liquid water, weakens previously strong 

frozen materials, increases the permeability of thawing soils, speeds aqueous chemical reactions, and 

drives a multitude of other processes, all with the potential to dramatically alter our environment. In 

this testimony I will focus in problems directly involving glaciers (leaving aside some equally important 

issues involving permafrost, river ice, and sea ice) and briefly summarize a few of what I view as the 

most important outstanding environmental problems.  I will also concentrate on those problems that 

affect the United States directly, or indirectly through economic and political reactions to environmental 

changes elsewhere in the world. 

• Seasonal snow and glacier runoff as a water resource.  Society everywhere in earth depends 

critically on freshwater for domestic use (cooking, cleaning, washing, etc.) as well as for 

agricultural irrigation, industrial use, and hydropower generation.  All fresh water moving on the 

earth’s surface starts as rain or snow, but that fraction falling at high elevations as snow will 

remain in place (either seasonally as snow or for many years as ice) until melting conditions at 

the surface allow the water to move downslope.  Water stored in the mountains as snow and ice 

acts as a reservoir, delaying the drainage of precipitation, which may arrive in very imbalanced 

“wet season/dry season” cycles, until later in the season.  This benefits users of the water by 
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spreading the downstream arrival of water throughout the year and storing water as glacier ice 

during wet years to be released during dry years.  This is a critically important benefit for 

agriculture anywhere (including the Western US), but no more so than in the Indian 

Subcontinent, where very large populations depend upon crops irrigated by runoff from the 

Himalayas. Recent research (Maurer et al, 2019) indicates that the glaciers of the Himalayas are 

experiencing losses at rates that have doubled over the past 40 years.  The economic and 

political effects of major seasonal water shortages in India and neighboring countries – a 

probable consequence of continued snowpack depletion and glacier losses – could be profound 

and global in its indirect consequences. 

 

• Glacier recession and geohazards. People and infrastructure living in the immediate vicinity of 

glaciers are exposed to natural hazards including flooding, landslides, and rockfalls, all 

associated with slopes destabilized by the removal of glacier ice (Richardson and Reynolds, 

2000)  Such risks are global in extent but are particularly concentrated in parts of the world with 

high population densities in mountain regions, and specifically on the south side of the 

Himalayas (Bhutan, India, Nepal, Pakistan) and in the Andes on the west coast of South America 

(Harrison et al, 2018).  These regions (along with virtually all of the earth’s mountain regions) 

are subject to landslide and rockfall hazards, but glacier retreat dramatically magnifies these 

hazards.  Advancing glaciers disaggregate rocks and soil at their base and margins and plow this 

material forward and the margins of the glacier, creating moraines that surround the glacier 

terminus and valley sides. When a glacier retreats, the moraines are left behind, and 

“proglacial” lakes frequently form in the enclosed depression formed between the retreating 

terminus and the inner side of the moraine wall.  Moraines are intrinsically weak materials, 

being composed of an incohesive mixture of soil and rocks of many sizes; they also typically 

have very steep slopes.  These factors all favor the incidence of slope failures and landslides, and 

when proglacial lakes are formed, additional hazards are created due to the easily eroded 

moraine dams. 

 

 

 

 

 

 

 

 

 

 

 
Imja Tsho (or Imja Lake) in eastern Nepal, dammed by a terminal moraine complex. The lake has been 

growing rapidly since the 1960s as the Imja Glacier has retreated. Photo: Sharad Joshi, Wikimedia 

Commons, Edited by J.Bendle. Source: http://www.antarcticglaciers.org/glacier-processes/glacial-

lakes/glacial-lake-outburst-floods/ 

https://commons.wikimedia.org/wiki/File:An_overview_of_Imja_Tsho_showing_lake_outlet_channel,_ponds,_ablation_valley.jpg
https://commons.wikimedia.org/wiki/File:An_overview_of_Imja_Tsho_showing_lake_outlet_channel,_ponds,_ablation_valley.jpg
http://www.antarcticglaciers.org/glacier-processes/glacial-lakes/glacial-lake-outburst-floods/
http://www.antarcticglaciers.org/glacier-processes/glacial-lakes/glacial-lake-outburst-floods/
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Glacier runoff and ocean salinity.  One of the most significant and rapidly changing effects of 

present day warming is the depletion of sea ice in the Arctic Ocean (Mueller et al, 2018).  The 

loss of sea ice in the arctic has profound implications on local and global scales, ranging from 

accelerated coastal erosion on Alaska’s arctic coast to alterations of the planetary energy 

balance as the reflectivity of the Arctic Basin drops with increasing open water.  The formation 

and maintenance of sea ice depends on the surface energy balance of the arctic and also on the 

salinity of Arctic Ocean water (McPhee et al, 1998).  Water entering the Arctic Basin via Bering 

Strait (between Alaska and Siberia) is one of the primary sources of low-salinity sea water in the 

Arctic Ocean.  The salinity of this Pacific sea water is influenced to a significant but poorly 

constrained degree by the Alaskan Current  (Woodgate and Aagaard, 2005), which in turn 

carries fresh water draining into the Gulf of Alaska from the glaciers of Alaska’s south coastal 

mountains (Chugach & St. Elias Ranges) and interior mountains (Alaska Range, Wrangell 

Mountains) northward and through Unimak Pass into the Bering Sea (see Figure).  The retreat of 

Alaska’s glaciers thus has an effect – probably significant but at this point not well known – and 

arctic sea ice.  Glacier losses in the Canadian Arctic may have a similar influence (Dimitrenko et 

al, 2017).  The influence of Alaska’s glaciers on conditions in the Arctic is not well established in 

part because of the absence of any comprehensive program of observations of freshwater 

runoff to the Gulf of Alaska.  This is one of many examples of the significance of Alaska’s glaciers 

both locally and globally, and the need to invest in research in this area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Glacier retreat and gravitational fingerprinting. Like a magnet drawing metal filings around its 

edges, the large mass of glaciers and ice sheets on land (e.g. the Greenland and Antarctic ice 

sheets and the glaciers in Alaska) exerts a gravitational pull that draws ocean water toward 

Alaskan coastal transport carrying glacier runoff from coastal mountains in the 

Bering Sea. Adapted from Weingartner et al (2005) 
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them. This creates a non-uniform sea level surface, with sea level slightly elevated adjacent to 

any large mass concentration and slightly lowered elsewhere. This distortion on the mean sea 

level surface is unique to each ice mass given its size and location, and is informally referred to 

as the gravitational “fingerprint” of that ice mass. When glaciers shrink, however, the magnitude 

of their gravitational pull decreases, and the combined result of the melting of any given ice 

mass is to raise the total amount of water in the ocean (raising global average sea level) and to 

reduce that particular “fingerprint” distortion of the sea level surface. The combined effect of 

the gravitational fingerprints from Alaska and, to a lesser extent, Greenland, causes relative sea 

level to fall all along the west coast of the United States, whereas melting from Antarctica 

causes a relative sea level rise. The net effect of losses from Alaska, Greenland, and Antarctica 

on the US west coast is reduce the local sea level rise relative to the global mean value by values 

ranging from ca. 40% in Washington State to ca. 15% in southern California (National Research 

Council, 2012).  Again, Alaska’s glaciers have significant effects both globally and locally. 

 

 

 

 

 

 

 

 

 

• Rising sea level from the earth’s 200,000-plus glaciers.  The total potential sea level rise from 

these glaciers is very small: only a bit more than 1 foot (Farinotti et al, 2018).  However, the 

present-day rate of loss from the glaciers is as great as that coming from the ice sheets, and will 

in all likelihood continue to match the ice sheet losses for at least the next few decades, when 

near-term decision making requires the highest level of confidence in projections.  

 

Since the beginning of comprehensive global observations, virtually all glaciers on Earth have been 

in a state of mass loss, contributing 0.71 ± 0.08 mm yr-1 over the period 2003-2009 (Gardner et 

al., 2013) corresponding to 29±13% of the observed sea-level rise during that period.  The most 

recent assessment of glacier losses (Zemp et al, 2019) finds a global total loss rate for the period 

2006-2016 to be 0.92 ± 0.39 mm yr-1.  For context, the most recent ice sheet loss rate assessments 

show Antarctic contributing 50 ± 26 mm yr-1 (2008-2015) and Greenland contributing 0.77 ±  0.005 

mm yr-1 (2007-12) and 0.53 ±  0.05 mm yr-1 (2012-2017). 

  

Gravitational “Fingerprint” of a terrestrially-based ice mass:  Globally averaged 

sea level increases as any terrestrially-based glacier shrinks, but relative sea level 

change is negative adjacent to the declining ice mass and positive away from it. 
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Global glaciers have been grouped into 19 distinct regions defined by the Randolph Glacier 

Inventory (Pfeffer et al., 2014).  Twelve of these 19 regions, contain the majority of the global 

glacier ice volume.  These 12 regions include the Canadian Arctic archipelago, Alaska (yet another 

example of Alaska’s significance in environmental change), High Mountain Asia regions, South 

America, and the Antarctic islands and account for 99% of the total glacier volume exclusive of 

the ice sheets. In addition to the glacier contribution to sea level, increased runoff from the 

world’s glaciers augments annual average river discharge as well as seasonal variations  (Huss et 

al., 2017; Huss and Hock, 2018; Immerzeel et al., 2010; Kaser et al., 2010). These rates of loss are 

historically unprecedented in the observational record (Zemp et al., 2017) and are due primarily 

to anthropogenic warming of the troposphere (Marzeion et al., 2014). A recent analysis of the 

glacier projections using six different glacier evolution models forced with output from 8 to 15 

General Circulation Models projects that glaciers will contribute 115±21 mm to sea-level rise over 

the period 2015 to 2100 under the low emission scenario RCP2.6, but almost double as much 

(199±26 mm) under the high emission RCP8.5 scenario (Hock et al., submitted).  

 
 
Because of their large number and small size, assessments of all 200,000+ glaciers on earth has 

been difficult, and the calculated aggregate loss rate has varied significantly over time, partly due 

to limitations in observational methods and partly due to the fact that the rates change over time.  

Recent research programs have benefitted from rapid developments in remote sensing, including 

NASA’s ICESat satellite (2003 – 2009), the NASA-GFZ GRACE gravity twin satellite mission (2002-

2017). Further missions, including the GRACE Follow-On (GRACE-FO), launched in May of 2018, 

and ICESat-2, launched in September of 2018.  These mission investments have aided global 

glacier assessments enormously and testify to NASA’s commitment to earth science generally and 

glacier monitoring in particular.  However, remote sensing methods cannot work alone to 

continue accurate and validated observations of glacier change, nor can they be used in isolation 

to solve the numerous outstanding problems faced by modelers seeking to project future glacier 

behavior. Integration of field and remote sensing observations with model simulations is 

necessary to accurately project future trends in glacier contribution to sea level. Conventional 

field observations of mass balance at “benchmark” glaciers, especially those in Alaska, should 

remain a high priority to ensure the continuity of long-term records, some of which extend back 

to the 1957-58 International Geophysical Year.  Ground-truthing programs are particularly 

important for large glacierized regions with steep gradients in environmental conditions, where 

the distant view of an orbiting satellite becomes a liability. Field studies at these and other sites 

should be expanded to include detailed observations of surface and dynamic processes. Improved 

Global glacier loss rate assessments, 1960 to the present.  The most recent loss rates from the 

Greenland and Antarctic Ice Sheets are included for comparison. 
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parameterization of surface albedo, which controls the dominant term in the surface radiation 

budget, can be achieved through studies of snow and ice crystal grain sizes (Painter et al., 2009) 

and parameterization of the impacts of dust/black carbon (Flanner and Zender, 2006) and debris 

cover (Reznichenko et al., 2010) on surface melt rates. The conversion of volume to mass change 

in geodetic remote sensing assessments remains a large source of uncertainty (Huss, 2013) and 

can be informed through field measurements of near-surface densification rates. Glaciers that 

terminate in lakes or the ocean have the potential for rapid changes through poorly-understood 

calving mechanisms (Moholdt et al., 2012; Willis et al., 2018), requiring expanded observations of 

ice thickness, grounding line locations and lake/fiord conditions. Finally, field programs should 

include observations of stream discharge where possible since this provides valuable information 

on the integrated water balance of glacierized watersheds. 
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Books: 
 
Pfeffer, W.T., Columbia Glacier at Mid-Retreat: the Opening of a New Landscape. Book, 
Published by American Geophysical Union, Washington DC, December 2007. 
 
Pfeffer, W.T. The Hand of the Small-Town Builder. David R. Godine, Boston, 2014. 
 
Other Publications: 
 
Pfeffer, W.T., Glaciology Needs To Come Out Of The Ivory Tower, EARTH Magazine, November 
2012 
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Art Activities: 
 
Exhibitions: 
 
The House, The Road, and The Valley: Occupation and Change in the Landscape of the 
American West. National Center for Atmospheric Research, April, 2005; Boulder Public Library, 
September – November, 2005; Auraria Library, Denver, December 2005 – January 2006. 
 
The Texture of History: Abandonment and Rediscovery in the American West (with photographer 
R. S. Anderson), March-April, 2004, University of Colorado Andrew J. Macky Gallery. 
 
Boulder Open Studios Tour, October 2003, 2004 

 
Arctic and Alpine: Visions of a Landscape (with painter M.F. Meier), April-May, 2002, University of 
Colorado Andrew J. Macky Gallery. 
 
Art/Architecture Publications: 
 
W. T. Pfeffer, People and Place in the Far North: A Plan to Present the Vision of Life, Community, 
and Change in the Circumpolar Arctic. 2010.  Reykjavik Academy, Iceland. 
 
Columbia Glacier at Mid-Retreat: The Opening of a New Landscape. Publisher: American 
Geophysical Union, Washington DC. 2007. 
 
The Hand of the Small Town Builder: Small Summer Cottages of Northern New England. 
Publisher: David R. Godine, Boston, MA.  In press. Planned release data March 2014 
 
Art Funding: 
Graham Foundation for Advanced Studies in the Fine Arts, Chicago, Illinois. Grant provided to 
support photography for The Hand of the Small Town Builder. $4900 (2003) 
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