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Good	afternoon,	Chairwoman	Johnson,	Ranking	Member	Lucas,	Chairwoman	Stevens,	
Ranking	Member	Baird,	and	members	of	the	Committee.	Thank	you	for	giving	me	this	
opportunity	to	summarize	and	share	some	of	my	research	on	the	implications	of	AI	for	the	
economy.	Addressing the opportunities created by AI is one of the most important challenges 
for the government, for business and for individuals over the coming decade. I’m gratified 
that this Committee is taking this challenge seriously.		While I primarily focus on my own 
research for this testimony, I will also draw on work by my team at MIT IDE, work by the 
MIT Work of the Future initiative, the AI Index, many other researchers.  These are my own 
views. I am not speaking for anyone else.	
 
1776 was a remarkable year.  The United States declared its independence, creating a new 
kind of nation. Adam Smith wrote the Wealth of Nations, laying the foundations for free 
enterprise, and James Watt introduced a superior steam engine, igniting the industrial 
revolution. Our nation, and the world, are immensely freer and wealthier than our ancestors 
because of these three milestones and the subsequent changes they set in motion. 
 
Today, we are also at a crossroads of history. The people in this room will help us choose the 
path forward. I will begin my testimony by summarizing some key changes in the underlying 
technologies, then discuss the implications for work, productivity and the broader economy, 
and conclude with five policy recommendations. 
 
The biggest drivers of economic growth are advances in technology, specifically general 
purpose technologies like the steam engine, electricity and computers. These technologies not 
only have important direct effects, but also enable myriad complementary innovations in 
technology, business processes and economic organization.  The most important general 
purpose technology of our era is AI.  Indeed, it may be the most general of all general 
purpose technologies because if we can create intelligent machines, we can use that 
intelligence to solve many other problems. 
 
The most important advances in AI have been in the area called machine learning called deep 
neural networks or deep learning.  Because of insights by researchers like Geoffrey Hinton, 
Yann LeCun and Yoshua Bengio, these techniques enable machines to learn from data 
dramatically more effectively than ever before. For instance, in 2010, the best algorithms 
could recognize and label images on the large Imagenet dataset with barely 70% accuracy. 
Today, using deep learning techniques, they are about 98% accurate, surpassing human level 
performance on the same dataset. Similarly, deep learning techniques enable voice 
recognition systems to understand spoken language well-enough to respond to simple 
questions or instructions. While they are far from perfect, we are in the midst of the 
remarkable 10-year period of history where we went from machines not understanding 
human speech, to machines and humans routinely talking to each other in natural language.  
Machines now outperform humans in a wide variety of tasks that only humans could do 
before, from choosing which ads to show when we read an article on the web, to 
recommending who to hire or lend money to, to reading our medical images and diagnosing 
our diseases. 
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The recent advances in machine learning are breath-taking and important. However, it is 
critical to understand that we are very far from artificial general intelligence that is, the kind 
of AI than spans the full range of human intelligence. Machines learning is now superhuman 
in many tasks that involving mapping a set of inputs into a set of outputs (e.g. images -> 
labels, voice recordings -> transcripts; clickstream data -> advertising recommendations; 
medical data -> diagnoses) but humans outperform machines in most other tasks and we will 
almost surely continue to do so for decades.   
 
In particular, humans have a big edge in tasks involving creativity, interpersonal skills and 
emotional intelligence, and physical dexterity.  This means we are not in danger of mass 
unemployment anytime soon. There is no shortage of work that needs to be done in our 
society that only humans can do. In work I’ve been doing with Tom Mitchell and Daniel 
Rock, we’ve mapped out, in some cases literally, where machine learning technologies will 
have the biggest impacts. The typical occupation consists of 20-30 distinct task, some of 
which are much easier for machine learning systems to do than others. Our research shows 
that few, if any, occupations will be fully automated by the new wave of technologies. At the 
same time, few, if any, will be unaffected. Instead, most will be transformed.  For instance, 
the job of a typical radiologist consists of 26 distinct tasks, from reading medical images, to 
consulting with other physicians and experts, to advising and counselling patients.  While 
machine learning has made impressive advances in reading medical images, it is of little use 
in most of the other tasks done by radiologists.  We have used our techniques to predict 
which occupations will be most affected, as well as which industries, which geographic 
regions and even which individual firms. 
 
Our research tells us that we face two urgent economic challenges: a lack of productivity 
growth and too much inequality. 
 
Productivity is what determines the wealth of nations, the success of companies and the 
living standards of individuals. While advances in technology are the catalyst of productivity 
growth, that growth is not realized unless and until a cascade of complementary innovations 
are implemented. For instance, when American factories first electrified, there was negligible 
productivity growth for the first 30 years. It was only after the first generation of managers 
retired and a new generation replaced the old “group drive” organization of machinery, which 
was optimized for steam engines, with the new “unit drive” approach that enable assembly 
lines that we saw a doubling of productivity. Today, despite impressive improvements in AI, 
not to mention many other technologies, productivity growth has actually slowed down, from 
an average of over 2.4% per year between 1995-2005 to less than 1.3% per year since then. 
The bottleneck is not the technology – though faster advances certainly wouldn’t hurt – but 
rather a lack of complementary process innovation, workforce reskilling and business 
dynamism. Simply plugging in new technologies without changing business organization and 
workforce skills is like paving the cow paths. It leaves the real benefits largely untapped. 
However, by making complementary investments, we can speed up productivity growth. In 
this way, the economic pie will be bigger, giving us trillions of dollars of additional resources 
to address challenges in healthcare, the environment, poverty, national security and overall 
economic well-being. 
 
While productivity is important, it isn’t everything. There is no economic law that says that 
everyone will benefit from technological advances or productivity growth. As the economic 
pie grows, it is possible for some people to be left behind, even as others benefit 
disproportionately. For the first two centuries since 1776, that was not the case. Most 
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Americans benefitted as we created an economic system that generated shared prosperity.  
But over the past several decades, the benefits of economic growth have been much more 
unequal. Not only has median income barely grown since the late 1990s, but other social 
indictors, have worsened. Deaths from despair, namely suicide, drug addiction and suicide, 
are skyrocketing, particularly among Americans with a high school education or less. And for 
the first time in history, average life expectance of Americans has begun to fall, again driving 
by worse mortality of less educated Americans. It’s no coincidence that these are exactly the 
Americans who haven’t shared in our economic growth, as technologies automate many of 
the tasks they once did.  As a society, we haven’t helped them develop the new skills needed 
to thrive in an increasingly technological economy, or updated our organizations to put their 
skills to effective use. 
 
What does the future hold? That depends almost entirely on our choices, including the 
choices made in Congress. 
 
My policy recommendations can be grouped into five key areas. 
 

1. Reinvent	education.	
This	is	not	the	first	time	America	has	faced	a	challenge	from	powerful	new	general	
purpose	technologies.	In	the	early	1800s,	nearly	90%	of	Americans	worked	in	
agriculture,	by	the	end	of	that	century	it	was	only	42%.	The	former	farmers	didn’t	
simply	become	unemployed.	Instead	they	were	redeployed.	They	went	into	
manufacturing	and	services,	driving	productivity	and	growth.	A	big	reason	that	
transition	was	successful	was	that	America	led	the	world	in	education,	first	via	
primary	schools	and	later	high	schools.	This	created	not	only	world-leading	
prosperity,	but	also	one	of	most	equal	societies	on	the	planet,	with	extensive	
upward	mobility.	
	
Today,	we	need	a	similar	commitment	to	education.	It	won’t	be	enough	to	simply	
invest	more	in	human	capital,	although	we	should	surely	do	that.	We	must	also	
reinvent	education	to	focus	on	the	types	of	skills	that	machines	can’t	match.	As	
noted	above,	these	include	creativity	(in	science,	the	arts,	entrepreneurship	and	
beyond)	as	well	as	interpersonal	skills	(leadership,	teamwork,	persuasion,	caring,	
coaching,	etc.).	The	skills	needed	are	not	just	hard	skills,	like	software	coding	and	
STEM,	but	also	the	softer	skills,	from	the	arts,	to	social	work,	to	entrepreneurship.	
My	experience	is	that	both	hard	skills	and	soft	skills	can	be	nurtured	by	the	right	
environment	and	curricula.	
	
This	transformation	can	and	must	be	done	not	only	in	K-12	schools,	but	also	through	
an	expanded	commitment	to	vocational	education,	our	colleges	and	universities,	
graduate	education	and	life-long	learning.		Online	education	is	also	part	of	the	
solution,	not	simply	via	MOOCs,	but	also	via	embracing	the	“experiment	and	test”	
philosophy	that	enables	so	many	technology	firms	to	rapidly	iterate	and	improve	
their	offerings.	The	same	philosophy	needs	to	be	brought	to	education.	

 
2. Rebalance	capital	and	labor	

As	noted	in	the	recent	report	by	the	MIT	Work	of	the	Future	initiative,	of	which	I’m	a	
member,	our	tax	code	and	other	policies	are	heavily	skewed	toward	capital	at	the	
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expense	of	labor.		As	the	share	of	GDP	that	goes	to	labor	continues	to	fall,	we	must	
create	a	more	level	playing	field,	particularly	as	AI	starts	to	affect	more	and	more	of	
the	labor	force.	This	means	taxing	capital	and	labor	at	comparable	rates,	
encouraging	investments	in	human	capital	just	as	we	do	for	physical	capital,	and	
updating	corporate	governance	to	recognized	workers	as	stakeholders	alongside	
stockholders.		We	can	also	expand	the	earned	income	tax	credit	to	boost	incomes	
for	the	working	poor	and	use	revenues	from	carbon	taxes	and	other	Pigouvian	taxes	
to	lower	taxes	on	work	and	create	a	carbon	dividend.	

 
3. Invest	in	US	technology	leadership	

The	US	has	long	been	a	leader	not	just	in	AI,	but	in	a	broad	swath	of	technologies.		
That	technological	leadership	is	at	serious	risk	because	even	as	we	have	cut	federal	
investment	in	R&D,	other	nations	have	boosted	theirs.		Data	from	the	AI	Index,	
where	I	serve	on	the	steering	committee,	documents	a	host	of	metrics	that	show	the	
falling	share	of	research	being	done	in	the	US.	Federal	science	agencies,	working	
with	our	leading	universities	and	private	industry,	have	a	central	role	in	maintaining	
and	extending	America’s	science	and	technology	leadership	in	AI.	In	particular,	my	
MIT	colleagues	Jon	Gruber	and	Simon	Johnson	have	put	forth	a	compelling	plan	for	
Jumpstarting	America	that	not	only	extends	our	pre-eminence	but	also	shares	the	
benefits	from	innovation	more	widely.			
	

4. Welcome	High	Skill	Immigrants	
A	vastly	disproportionate	of	America’s	leaders	in	science	and	business	are	
immigrants	or	the	children	of	immigrants.		This	reflect	the	fact	that	the	US	has	long	
been	a	magnet	for	talent	and	a	place	where	that	talent	could	flourish.	Sadly,	that	
strength	is	being	severely	undercut	by	our	recent	immigration	policies.	When	I	asked	
my	students	at	MIT	what	was	the	most	important	message	I	should	being	to	
Washington	regarding	AI	policy,	they	unanimously	advised	me	to	push	for	less	
restrictive	immigration	policies.	Every	international	student	I	spoke	to,	whether	
undergraduate,	graduate	or	post-doc,	as	well	as	most	of	my	foreign-born	faculty	
colleagues,	had	harrowing	stories	to	tell	of	difficulties	they	have	add	with	our	
immigration	and	visa	process.		These	have	prevented	them	from	attending	
conferences,	participating	in	research	projects	and	in	far	too	many	cases,	led	them	
to	move	to	Canada,	Europe,	India,	China	or	other	nations	to	continue	their	research,	
rather	than	the	US.		A	more	welcoming	immigration	policy,	especially	for	top	talent,	
would	not	only	be	a	huge	boost	for	the	US,	but	also	good	for	the	world,	since	it	
would	make	it	easier	for	the	best	minds	to	work	together.	

	
5. Support	Entrepreneurship	

While	stories	of	technology-driven	entrepreneurship	are	common	in	the	media,	the	
data	tell	a	different	story:	as	documented	by	John	Haltiwanger,	Steven	Davis	and	
many	others,	new	business	formation	is	down,	fewer	people	are	working	in	young	
firms,	economic	and	geographic	mobility	is	down	and	almost	every	measure	of	
business	dynamism	has	declined	over	the	past	20	years.	This	has	hindered	new	
technologies	from	being	translated	into	new	products	and	service	that	benefit	the	
economy.	Boosting	entrepreneurship	will	help	reverse	the	stagnation	of	wages	for	
the	bottom	half	of	the	income	distribution,	particularly	those	groups	who	have	been	
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most	adversely	affected	by	automation.		This	is	not	because	everyone	should	
become	an	entrepreneur	or	gig	worker	but	because	it’s	the	core	function	of	
entrepreneurs	to	invent	the	new	goods,	services,	companies	and	jobs	that	supplant	
the	previous	types	of	work	that	are	being	automated.	Among	the	policies	that	can	
help	with	this	is	a	reform	of	occupational	licensing,	decoupling	of	healthcare	from	
employment,	and	direct	investments	in	teaching	entrepreneurship	and	boosting	new	
business	formation.	
	

 
Artificial Intelligence is the most transformative technology of our era. It has begun to affect 
many specific tasks, but its biggest impacts are still ahead. AI creates enormous opportunities 
for boosting productivity.  But the key to unlocking these benefits is not merely more or 
better technology investment, but also investment in the intangible complements, including 
new skills, new organizational processes and new business models.  As powerful and 
pervasive as AI will be, we are not facing the imminent end of work or mass unemployment. 
Instead, we are witnessing a growing inequality and disruption as many tasks, 
disproportionately those done by lower wage workers, are affected by the technology.   
 
With the right policies, we can harness the power of AI. With the right policies, particularly 
in reinventing education, rebalancing capital and labor, investing in US technological 
leadership, welcoming immigrants and boosting entrepreneurship we can create a economy 
that creates not only prosperity but shared prosperity. With the right polices, the next decade 
can be the best decade in US history since 1776. 
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By Erik Brynjolfsson1,2 and Tom Mitchell3

D
igital computers have transformed 

work in almost every sector of the 

economy over the past several decades 

(1). We are now at the beginning of 

an even larger and more rapid trans-

formation due to recent advances in 

machine learning (ML), which is capable of 

accelerating the pace of automation itself. 

However, although it is clear that ML is a 

“general purpose technology,” like the steam 

engine and electricity, which spawns a pleth-

ora of additional innovations and capabilities 

(2), there is no widely shared agreement on 

the tasks where ML systems excel, and thus 

little agreement on the specific expected im-

pacts on the workforce and on the economy 

more broadly. We discuss what we see to be 

key implications for the workforce, drawing 

on our rubric of what the current generation 

of ML systems can and cannot do [see the 

supplementary materials (SM)]. Although 

parts of many jobs may be “suitable for ML” 

(SML), other tasks within these same jobs do 

not fit the criteria for ML well; hence, effects 

on employment are more complex than the 

simple replacement and substitution story 

emphasized by some. Although economic ef-

fects of ML are relatively limited today, and 

we are not facing the imminent “end of work” 

as is sometimes proclaimed, the implications 

for the economy and the workforce going for-

ward are profound.

Any discussion of what ML can and cannot 

do, and how this might affect the economy, 

should first recognize two broad, underly-

ing considerations. We remain very far from 

artificial general intelligence (3). Machines 

cannot do the full range of tasks that humans 

can do (4). In addition, although innovations 
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generally have been important for overall im-

provements in income and living standards, 

and the first wave of pre-ML information 

technology (IT) systems in particular has 

created trillions of dollars of economic value, 

“The case that technological advances have 

contributed to wage inequality is strong” [see 

(1), a report from a committee we recently 

cochaired for the U.S. National Academies 

of Science, Engineering and Medicine]. Al-

though there are many forces contributing 

to inequality, such as increased globalization, 

the potential for large and rapid changes due 

to ML, in many cases within a decade, sug-

gests that the economic effects may be highly 

disruptive, creating both winners and los-

ers. This will require considerable attention 

among policy-makers, business leaders, tech-

nologists, and researchers. 

As machines automate some of the tasks 

that are SML in a particular job or process, 

the remaining tasks that are non-SML may 

become more valuable. In other cases, ma-

chines will augment human capabilities and 

make possible entirely new products, ser-

vices, and processes. Therefore, the net effect 

on the demand for labor, even within jobs 

that are partially automated, can be either 

negative or positive. Although broader eco-

nomic effects can be complex, labor demand 

is more likely to fall for tasks that are close 

substitutes for capabilities of ML, whereas it 

is more likely to increase for tasks that are 

complements for these systems. Each time 

an ML system crosses the threshold where it 

becomes more cost-effective than humans on 

a task, profit-maximizing entrepreneurs and 

managers will increasingly seek to substitute 

machines for people. This can have effects 

throughout the economy, boosting productiv-

ity, lowering prices, shifting labor demand, 

and restructuring industries.

WE KNOW MORE THAN WE CAN TELL

As the philosopher Polanyi observed, we 

know more than we can tell (5). Recogniz-

ing a face, riding a bike, and understanding 

speech are tasks humans know very well 

how to do, but our ability to reflect on how 

we perform them is poor. We cannot codify 

many tasks easily, or perhaps at all, into a set 

of formal rules. Thus, prior to ML, Polanyi’s 

paradox limited the set of tasks that could be 

automated by programming computers (6). 

But today, in many cases, ML algorithms have 

made it possible to train computer systems 

to be more accurate and more capable than 

those that we can manually program. 

Until recently, creating a new computer 

program involved a labor-intensive process 

of manual coding. But this expensive process 

is increasingly being augmented or replaced 

by a more automated process of running an 

existing ML algorithm on appropriate train-

ing data. The importance of this shift is two-

fold. In a growing subset of applications, this 

paradigm can produce more accurate and 

reliable programs than human program-

mers (e.g., face recognition and credit card 

fraud detection). Second, this paradigm can 

dramatically lower costs for creating and 

maintaining new software. This lowered cost 

reduces the barrier to experiment with and 

explore potential computerization of tasks, 

and encourages development of computer 

systems that will automatically automate 

many types of routine workflows with little 

or no human intervention. 

Such progress in ML has been particularly 

rapid in the past 6 to 8 years due in large part 

to the sheer volume of training data available 

for some tasks, which may be large enough 

to capture highly valuable and previously 

unnoticed regularities—perhaps impossibly 

large for a person to examine or comprehend, 

yet within the processing ability of ML algo-

rithms. When large enough training data sets 

are available, ML can sometimes produce 

computer programs that outperform the best 

humans at the task (e.g., dermatology diag-

nosis, the game of Go, detecting potential 

credit card fraud).

Also critical to ML progress has been the 

combination of improved algorithms, in-

cluding deep neural networks (DNNs) and 

considerably faster computer hardware. For 

example, Facebook switched from phrase-

based machine translation models to DNNs 

for more than 4.5 billion language transla-

tions each day. DNNs for image recognition 

have driven error rates on ImageNet, a large 

data set of more than 10,000 labeled images 

(7), down from more than 30% in 2010 to less 

than 3% today. Similarly, DNNs have helped 

improve error rates from 8.4% to 4.9% in 

voice recognition since July 2016. The 5% 

threshold for image recognition and speech 

is important because that is roughly the error 

rate of humans when given similar data. 

AUTOMATING AUTOMATION

To produce a well-defined learning task to 

which we can apply a ML algorithm, one must 

fully specify the task, performance metric, 

and training experience. In most practical ap-

plications, the task to be learned corresponds 

to some target function, such as a function 

from input medical patient health records to 

output patient diagnoses, or a function from 

the current sensor inputs of a self-driving 

car to the correct next steering command. 

The most common type of training experi-

ence is data consisting of input-output pairs 

for the target function (e.g., medical records 

paired with the correct diagnoses). Obtaining 

ground-truth training data can be difficult in 

many domains, such as psychiatric diagnosis, 

hiring decisions, and legal cases.

Key steps in a successful commercial ap-

plication typically include efforts to  identify 

precisely the function to be learned;  collect 

and cleanse data to render it useable for 

training the ML algorithm; engineer data fea-

tures to choose which are likely to be helpful 

in predicting the target output, and perhaps 

to collect new data to make up for shortfalls 

in the original features collected; experiment 

with different algorithms and parameter 

settings to optimize the accuracy of learned 

classifiers; and embed the resulting learned 

system into routine business operations in a 

way that improves productivity and, if pos-

sible, in a way that captures additional train-

ing examples on an ongoing basis.

One approach that is particularly rel-

evant to gauging the rate of future automa-

tion is the “learning apprentice” (sometimes 

called the “human in the loop”) approach 

(8), in which the artificial intelligence (AI) 

program acts as an apprentice to assist the 
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human worker, while also learning by ob-

serving the human’s decisions and captur-

ing these as additional training examples. 

This approach has led to new kinds of busi-

ness models.

Training a learning apprentice to mimic 

human-generated decisions offers the poten-

tial for machines to learn from the combined 

data of multiple people it assists, perhaps 

leading to outperforming each individual on 

the team that trains it. Still, its learned exper-

tise may be limited by the skill level of the 

human team and by the online availability of 

relevant decision variables. However, in cases 

where the computer can also access indepen-

dent data to determine the optimal decision 

(ground truth), it may be possible to improve 

on human decisions and then to help the hu-

man improve their own performance. For 

example, in medical diagnosis of skin cancer 

from dermatological images, using the results 

of subsequent biopsies as a gold standard for 

training can produce computer programs 

with even higher diagnostic accuracies than 

human doctors (9).

MOST SUITABLE TASKS
Although recent advances in the capabili-

ties of ML systems are impressive, they are 

not equally suitable for all tasks. The cur-

rent wave of successes draw particularly 

heavily on a paradigm known as supervised 

learning, typically using DNNs. They can 

be immensely powerful in domains that 

are well suited for such use. However, their 

competence is also dramatically narrower 

and more fragile than human decision-

making, and there are many tasks for which 

this approach is completely ineffective. Of 

course, advances in ML continue, and other 

approaches are likely to be better suited for 

different types of tasks. We identify eight 

key criteria that help distinguish SML tasks 

from tasks where ML is less likely to be suc-

cessful, at least when using the currently 

dominant ML paradigm (see the SM for a 

more detailed, 21-item rubric). 

1. Learning a function that maps well-defined 
inputs to well-defined outputs
Among others, these include classifica-

tion (e.g., labeling images of dog breeds 

or labeling medical records according 

to the likelihood of cancer) and predic-

tion (e.g., analyzing a loan application to 

predict the likelihood of future default). 

Although ML may learn to predict the 

Y value associated with any given input 

X, this is a learned statistical correlation 

that might not capture causal effects. 

2. Large (digital) data sets exist or can be 
created containing input-output pairs
The more training examples are avail-

able, the more accurate the learning. 

One of the remarkable characteristics 

of DNNs is that performance in many 

domains does not seem to asymptote 

after a certain number of examples 

(10). It is especially important that 

all of the relevant input features be 

captured in the training data. Although 

in principle any arbitrary function can 

be represented by a DNN (11), comput-

ers are vulnerable to mimicking and 

perpetuating unwanted biases present 

in the training data and to missing 

regularities that involve variables that 

they cannot observe. Digital data can 

often be created by monitoring existing 

processes and customer interactions, by 

hiring humans to explicitly tag or label 

portions of the data or create entirely 

new data sets, or by simulating the 

relevant problem setting. 

3. The task provides clear feedback with 
clearly definable goals and metrics
ML works well when we can clearly 

describe the goals, even if we cannot nec-

essarily define the best process for achiev-

ing those goals. This contrasts with earlier 

approaches to automation. The ability 

to capture input-output decisions of 

individuals, although it might allow learn-

ing to mimic those individuals, might not 

lead to optimal system-wide performance 

because the humans themselves might 

make imperfect decisions. Therefore, hav-

ing clearly defined system-wide metrics 

for performance (e.g., to optimize traffic 

flow throughout a city rather than at a 

particular intersection) provides a gold 

standard for the ML system. ML is par-

ticularly powerful when training data are 

labeled according to such gold standards, 

thereby defining the desired goals.

4. No long chains of logic or reasoning that 
depend on diverse background knowledge 
or common sense
ML systems are very strong at learning 

empirical associations in data but are 

less effective when the task requires 

long chains of reasoning or complex 

planning that rely on common sense 

or background knowledge unknown to 

the computer. Ng’s “one-second rule” (4) 

suggests that ML will do well on video 

games that require quick reaction and 

provide instantaneous feedback but 

less well on games where choosing the 

optimal action depends on remembering 

previous events distant in time and on 

unknown background knowledge about 

the world (e.g., knowing where in the 

room a newly introduced item is likely 

to be found) (12). Exceptions to this are 

games such as Go and chess, because 

these nonphysical games can be rapidly 

simulated with perfect accuracy, so that 

millions of perfectly self-labeled training 

examples can be automatically collected. 

However, in most real-world domains, we 

lack such perfect simulations.

5. No need for detailed explanation of how 
the decision was made
Large neural nets learn to make deci-

sions by subtly adjusting up to hundreds 

of millions of numerical weights that 

interconnect their artificial neurons. 

Explaining the reasoning for such deci-

sions to humans can be difficult because 

DNNs often do not make use of the same 

intermediate abstractions that humans 

do. While work is under way on explain-

able AI systems (13), current systems are 

relatively weak in this area. For example, 

whereas computers can diagnose certain 
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types of cancer or pneumonia as well as 

or better than expert doctors, their ability 

to explain why or how they came up with 

the diagnosis is poor when compared 

with human doctors. For many percep-

tual tasks, humans are also poor at ex-

plaining, for example, how they recognize 

words from the sounds they hear.

6. A tolerance for error and no need for 

provably correct or optimal solutions

Nearly all ML algorithms derive their 

solutions statistically and probabilisti-

cally. As a result, it is rarely possible to 

train them to 100% accuracy. Even the 

best speech, object recognition, and 

clinical diagnosis computer systems 

make errors (as do the best humans). 

Therefore, tolerance to errors of the 

learned system is an important crite-

rion constraining adoption.

7. The phenomenon or function being learned 

should not change rapidly over time

In general, ML algorithms work well 

only when the distribution of future test 

examples is similar to the distribution 

of training examples. If these distribu-

tions change over time, then retraining is 

typically required, and success therefore 

depends on the rate of change, relative 

to the rate of acquisition of new training 

data (e.g., email spam filters do a good 

job of keeping up with adversarial spam-

mers, partly because the rate of acquisi-

tion of new emails is high compared to 

the rate at which spam changes). 

8. No specialized dexterity, physical skills, 

or mobility required

Robots are still quite clumsy com-

pared with humans when dealing with 

physical manipulation in unstructured 

environments and tasks. This is not so 

much a shortcoming of ML but instead 

a consequence of the state of the art in 

general physical mechanical manipula-

tors for robots.

WORKFORCE IMPLICATIONS

The main effects of pre-ML IT have been on 

a relatively narrow swath of routine, highly 

structured and repetitive tasks (14). This 

has been a key reason that labor demand 

has fallen for jobs in the middle of the skill 

and wage spectrum, like clerks and factory 

workers, whereas demand at the bottom 

(e.g., janitor or home health aide) and top 

(e.g., physicians) has held up in most ad-

vanced countries (15). But a much broader 

set of tasks will be automated or augmented 

by machines over the coming years. This in-

cludes tasks for which humans are unable to 

articulate a strategy but where statistics in 

data reveal regularities that entail a strategy. 

Although the framework of routine versus 

nonroutine tasks did a very effective job of 

describing tasks suitable for the last wave of 

automation (14), the set of SML tasks is of-

ten very different. Thus, simply extrapolating 

past trends will be misleading, and a new 

framework is needed.

Jobs typically consist of a number of dis-

tinct but interrelated tasks. In most cases, 

only some of these tasks are likely to be suit-

able for ML, and they are not necessarily the 

ones that were easy to automate with previ-

ous technologies. For instance, when we ap-

ply our 21-question SML rubric to various 

occupations, we find that a ML system can 

be trained to help lawyers classify potentially 

relevant documents for a case but would have 

a much harder time interviewing potential 

witnesses or developing a winning legal strat-

egy (16). Similarly, ML systems have made 

rapid advances in reading medical images, 

outperforming humans in some applications 

(17). However, the more unstructured task 

of interacting with other doctors, and the 

potentially emotionally fraught task of com-

municating with and comforting patients, 

are much less suitable for ML approaches, at 

least as they exist today.

That is not to say that all tasks requiring 

emotional intelligence are beyond the reach 

of ML systems. One of the surprising impli-

cations of our rubric is that some aspects of 

sales and customer interaction are poten-

tially a very good fit. For instance, transcripts 

from large sets of online chats between sales-

people and potential customers can be used 

as training data for a simple chatbot that 

recognizes which answers to certain com-

mon queries are most likely to lead to sales 

(18). Companies are also using ML to identify 

subtle emotions from videos of people.

Another area where the SML rubric de-

parts from the conventional framework is 

in tasks that may involve creativity. In the 

old computing paradigm, each step of a 

process needed to be specified in advance 

with great precision. There was no room for 

the machine to be “creative” or figure out on 

its own how to solve a particular problem. 

But ML systems are specifically designed to 

allow the machine to figure out solutions 

on its own, at least for SML tasks. What is 

required is not that the process be defined 

in great detail in advance but that the prop-

erties of the desired solution be well speci-

fied and that a suitable simulator exists so 

that the ML system can explore the space 

of available alternatives and evaluate their 

properties accurately. For instance, design-

ing a complex new device has historically 

been a task where humans are more ca-

pable than machines. But generative design 

software can come up with new designs for 

objects like the heat exchanger (see photo) 

that meet all the requirements (e.g., weight, 

strength, and cooling rate) more effectively 

than anything designed by a human, and 

with a very different look and feel (18). 

Is it “creative”? That depends on what 

definition one uses. But some “creative” tasks 

that were previously reserved for humans 

will be increasingly automatable in the com-

ing years. This approach works well when 

the final goal can be well specified and the 

solutions can be automatically evaluated as 

clearly right or wrong, or at least better or 

worse. As a result, we can expect such tasks 

to be increasingly subject to automation. At 

the same time, the role of humans in more 

clearly defining goals will become more im-

portant, suggesting an increased role for 

scientists, entrepreneurs, and those making 

a contribution by asking the right questions, 

even if the machines are often better able to 

find the solutions to those questions once 

they are clearly defined. 

SIX ECONOMIC FACTORS

There are many nontechnological factors 

that will affect the implications of ML for the 

workforce. Specifically, the total effect of ML 

on labor demand and wages can be written 

as a function of six distinct economic factors:

1. Substitution

Computer systems created by ML will di-

rectly substitute for some tasks, replacing 

the human and reducing labor demand 

for any given level of output

2. Price elasticity

Automation via machine learning may 

lower prices for tasks. This can lead to 

lower or higher total spending, depend-

ing on the price elasticity of demand. For 

instance, if elasticity is less than –1, then 

a decrease in price leads to a more than 

proportional increase in quantity pur-

chased, and total spending (price times 

quantity) will increase. By analogy, as 

technology reduced the price of air travel 

after 1903, total spending on this type of 

travel increased, as did employment in 

this industry.

3. Complementarities

Task B may be an important, or even 

indispensable, complement to an-

other task A that is automated. As the 

price of A falls, the demand for B will 

increase. By analogy, as calculation 

became automated, the demand for hu-

man programmers increased. Skills can 

also be complementary to other skills. 

For instance, interpersonal skills are 

increasingly complementary to analyti-

cal skills (19).
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4. Income elasticity

Automation may change the total 

income for some individuals or the 

broader population. If income elastic-

ity for a good is nonzero, this will in 

turn change demand for some types of 

goods and the derived demand for the 

tasks needed to produce those goods. By 

analogy, as total income has increased, 

Americans have spent more of their 

income on restaurant meals.

5. Elasticity of labor supply

As wages change, the number of people 

working on the task will respond. If 

there are many people who already have 

the requisite skills (for example, driving 

a car for a ride-hailing service), then 

supply will be fairly elastic and wages 

will not rise (or fall) much, if at all, even 

if demand increases (or falls) a lot. In 

contrast, if skills are more difficult to ac-

quire, such as becoming a data scientist, 

then changes in demand will mainly be 

reflected in wages, not employment. 

6. Business process redesign

The production function that relates any 

given set of different types and quanti-

ties of labor, capital, and other inputs 

to output is not fixed. Entrepreneurs, 

managers, and workers constantly work 

to reinvent the relevant processes. When 

faced with new technologies, they will 

change the production process, by design 

or through luck, and find more efficient 

ways to produce output (20). These 

changes can take time and will often 

economize on the most expensive inputs, 

increasing demand elasticity. Similarly, 

over time, individuals can make a choice 

to respond to higher wages in some oc-

cupations or places by investing in devel-

oping the new skills required for work or 

moving to a new location, increasing the 

relevant supply elasticity. Thus, accord-

ing to Le Chatelier’s principle (21), both 

demand and supply elasticities will tend 

to be greater in the long run than in the 

short run as quasi-fixed factors adjust. 

Adoption and diffusion of technologies of-

ten take years or decades because of the 

need for changes in production processes, 

organizational design, business models, 

supply chains, legal constraints, and even 

cultural expectations. Such complemen-

tarities are as ubiquitous in modern orga-

nizations and economies as they are subtle 

and difficult to identify, and they can cre-

ate considerable inertia, slowing the imple-

mentation of even—or especially—radical 

new technologies (22). Applications that 

require complementary changes on many 

dimensions will tend to take longer to af-

fect the economy and workforce than those 

that require less redesign of existing sys-

tems. For instance, integration of autono-

mous trucks onto city streets might require 

changes in traffic laws, liability rules, in-

surance regulations, traffic flow, and the 

like, whereas the switch from talking to a 

human assistant to a virtual assistant in 

a call center might require relatively little 

redesign of other aspects of the business 

process or customer experience. 

Over time, another factor becomes increas-

ingly important: New goods, services, tasks, 

and processes are always being invented. 

These inventions can lead to the creation of 

altogether new tasks and jobs (23) and thus 

can change the magnitudes and signs of the 

above relationships. Historically, as some 

tasks have been automated, the freed-up la-

bor has been redeployed to producing new 

goods and services or new, more effective 

production processes. Such innovations have 

been more important than increased capital, 

labor, or resource inputs as a force for rais-

ing overall incomes and living standards. ML 

systems may accelerate this process for many 

of the tasks that fit the criteria above by par-

tially automating automation itself.

As more data come online and are pooled 

and as we discover which tasks should be 

automated by ML, we will collect data even 

more rapidly to create even more capable sys-

tems. Unlike solutions to tasks mastered by 

humans, many solutions to tasks automated 

by ML can be disseminated almost instantly 

worldwide. There is every reason to expect 

that future enterprise software systems will 

be written to embed ML in every online de-

cision task, so that the cost of attempting to 

automate will come down even further.

The recent wave of supervised learning 

systems have already had considerable eco-

nomic impact. The ultimate scope and scale 

of further advances in ML may rival or ex-

ceed that of earlier general-purpose technolo-

gies like the internal combustion engine or 

electricity. These advances not only increased 

productivity directly but, more important, 

triggered waves of complementary innova-

tions in machines, business organization, 

and even the broader economy. Individuals, 

businesses, and societies that made the right 

complementary investments—for instance, 

in skills, resources, and infrastructure—

thrived as a result, whereas others not only 

failed to participate in the full benefits but in 

some cases were made worse off. Thus, a bet-

ter understanding of the precise applicability 

of each type of ML and its implications for 

specific tasks is critical for understanding its 

likely economic impact.        j
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